CHANGE NOTIFICATION

Analog Devices, Inc. 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900

April 24, 2017

Dear Sir/Madam: PCN#042117

Subject: Notification of Change to LTC6910-1, LTC6910-2, LTC6910-3 Datasheet

Please be advised that Analog Devices, Inc. Milpitas, California has made changes to the voltage gain specs (Gain = 100V/V and 64V/V, RL = 500Ω) of the LTC6910 parts to improve manufacturability. The changes are shown on the attached pages of the marked up datasheet. There are no die changes or changes to other specifications. The product shipped after June 24, 2017 will be tested to the new limits.

Should you have any concerns, please contact me before June 24, 2017, at which time we will consider this change to be approved. Should you have any questions or concerns please contact your local Linear Technology/Analog Devices Sales person or you may contact me at 408-432-1900 ext. 2077, or by e-mail at JASON.HU@ANALOG.COM.

Sincerely,

Jason Hu Quality Assurance Engineer 35.4

LTC6910-1 LTC6910-2/LTC6910-3

ELECTRICAL CHARACTERISTICS The • denotes the specifications that apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$, $V_S = 5V$, AGND = 2.5V, Gain = 1 (Digital Inputs 001), $R_L = 10k$ to midsupply point, unless otherwise noted.

			LTC6910-1C/LT	LTC6910-1H					
PARAMETER	CONDITIONS		MIN TYP	MAX	MIN	TYP	MAX	UNIT	
Specifications for LTC6910-1 Only									
Voltage Gain (Note 7)	V _S = 2.7V, Gain = 1, R _L = 10k V _S = 2.7V, Gain = 1, R _L = 580Ω	•	-0.05 0 -0.1 -0.02	0.07 0.06	-0.06 -0.12	0 -0.02	0.07 0.08	dB dB	
	V _S = 2.7V, Gain = 2, R _L = 10k	•	5,96 6.02	6.08	5.96	6.02	6.08	dB	
38.5 €	V _S = 2.7V, Gain = 5, R _L = 10k	•	13.85, 13.95	14.05	13.83	13.95	14.05	dB	
36.4	V _S = 2.7V, Gain = 10, R _L = 10k V _S = 2.7V, Gain = 10, R _L = 500Ω	8	19.7 19.0 19.6 19.85	20.1	19.7 19.4	19.9 19.85		dB dB	
36.4	V _S = 2.7V, Gain = 20, R _L = 10k	•	25.7 25.9	26.1	25.65	25.9	26.1	dB	_36
	V _S = 2.7V, Gain = 50, R _L = 10k	•	33.5 33.8	34.1	83.4	33.8	34.1	dB	71
	V _S = 2.7V, Gain = 100, H _L = 10k V _S = 2.7V, Gain = 100, H _L = 500Ω	•	39 39.6 37.4 39	40.2 40.1	38.7 36.4	39.6 39	40.2 40.1	aB dB	
	$V_S = 5V$, Gain = 1, $R_L = 10k$ $V_S = 5V$, Gain = 1, $R_L = 500\Omega$:	-0.05 0 -0.1 -0.01	0.07 0.08	-0.05 -0.11	0 -0.01	0.07 0.08	dB dB	38.
38.7	V _S = 5V, Gain = 2, R _L = 10k	•	5.96 6.02	6.08	5.955	6.02	6.08/	dB	7"
	V _S = 5V, Gain = 5, R _L = 10k	•	13.8 13.95	14.1	13.75	13.95	14/1	₫B	
37 ←	$V_S = 5V$, Gain = 10, $R_L = 10k$ $V_S = 5V$, Gain = 10, $R_L = 500\Omega$:	19.8 19.9 19.6 19.85	20.1 20.1		19.9 19.85	20.1 20.1	dB dB	
	V _S = 5V, Gain = 20, R _L = 10k	•	25.8 25.9	26.1	25.70	25/9	26.1/	dB	
	V _S = 5V, Gain = 50, R _L = 10k	•	33.5 33.8	34.1	33.4	23.8	34/1	dB	
	$V_S = 5V$, Gain = 100, $R_L = 10k$ $V_S = 5V$, Gain = 100, $R_L = 500\Omega$	•	39.3 39.7 38 39.2	40.1 40.1	39.1/ 37	39.7 39.2	40.1 40.1	dB dB	
39.1	$V_S = \pm 5V$, Gain = 1, $R_L = 10k$ $V_S = \pm 5V$, Gain = 1, $R_L = 500\Omega$:	-0.05 0 -0.1 -0.01	0.07 0.08	-0.05 -0.1	0 -0.01	0.07 0.08	dB dB	
	$V_S = \pm 5V$, Gain = 2, $R_L = 10k$	•	5.96 6.02	6.08	5.96	6.02	6.08	₫B	
37.8	$V_S = \pm 5V$, Gain = 5, $R_L = 10k$	•	13.80 13.95	14.1	13.80	13.95	14.1	∫ dB	39.1
	$V_S = \pm 5V$, Gain = 10, $R_L = 10k$ $V_S = \pm 5V$, Gain = 10, $R_L = 500\Omega$:	19.8 19.9 19.7 19.9	20.1 20.1	19.75 19.6	19.9 19.9	20.1 20.1	dB dB	
	V _S = ±5V, Gain = 20, R _L = 10k	•	25.8 25.95	26.1	25.75	25.95	26.1	dB	
	V _S = ±5V, Gain = 50, R _L > 10k	•	33.7 33.85	34	33.6	33.65	34	dB	
	$V_S = \pm 5V$, Gain = 100, $R_L = 10k$ $V_S = \pm 5V$, Gain = 100, $R_L = 500\Omega$	•	39.4 39.8 38.8 39.6	40.2 40.1	39.25 38	39.8 30.6	40.2 40.1	dB dB	
Offset Voltage Magnitude (Internal Op Amp) (Vos(OA)) (Note 8)		•	1.5	9		1.5	11	mV	
Offset Voltage Drift (Internal Op Amp) (Note 8)			6			8		μV/°C	
Offset Voltage Magnitude (Referred to "IN" Pin) (V _{OS(IN)})	Gain = 1 Gain = 10	•	3 1.7	15 10		3 1.7	18 12	mV mV	
DC Input Resistance (Note 9)	DC V _{IN} = 0V Gain = 0 Gain = 1 Gain = 2 Gain = 5	•	>100 10 5 2			>100 10 5 2		MΩ kΩ kΩ	
	Gain = 10, 20, 50, 100	•	1			1		kΩ	

Г

32.7

LTC6910-1 LTC6910-2/LTC6910-3

ELECTRICAL CHARACTERISTICS The • denotes the specifications that apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = 5V$, AGND = 2.5V, Gain = 1 (Digital Inputs 001), $R_L = 10k$ to midsupply point, unless otherwise noted.

PARAMETER	CONDITIONS		LTC6910-2C/LT			C6910-2		UNIT	
Specifications for LTC6910-2 Only	CONDITIONS	1	min itr	max	min	HE	mma	UNII	
Voltage Gain (Note 7)	V _S = 2.7V, Gain = 1, R _L = 10k	•	-0.06 0	0.08	-0.07	0	0.08	dB	
Totalgo dam (Hoto F)	$V_S = 2.7V$, Gain = 1, $R_L = 500\Omega$	•	-0.1 -0.02		-0.11			dB	
	V _S = 2.7V, Gain = 2, R _L = 10k	•	5.96 6,02	6.1	5.95	6.02	6.1	dB	
34.8	V _S = 2.7V, Gain = 4, R _L = 10k	•	11.9 12.02	12.12	11.9	12.02	12.12	dB	
	V _S = 2.7V, Gain = 8, R _L = 10k	•	17.8 17.98	18.15		17.98		dB	33.2
33.2 ←	$V_S = 2.7V$, Gain = 8, $R_L = 500\Omega$	•	17:65 17.95	-	17.55			dB	1
55.2	V _S = 2.7V, Gain = 16, R _L = 10k	•	23.75 24	24.2	23.75		24.2	dB	
	V _S = 2.7V, Gain = 32, R _L = 10k	•	29.7 30	30.2	29.65	30	30.2	₫B	35
	V _S = 2.7V, Gain = 64, R _L = 10k	•	35.3 35.75 34.2 35.3	36.2	35.2 33.7	35.75 35.3	36.2 36.2	/ dB	1
	V _S = 2.7V, Gain = 64, R _L = 500Ω V _S = 5V, Gain = 1, R _L = 10k	•	-0.06 0	0.08	-0.06	0	0.08	/ dB	/
35	$V_S = 5V$, Gain = 1, $R_L = 10K$ $V_S = 5V$, Gain = 1, $R_L = 500\Omega$:	-0.1 -0.01			-0.01		₫B	
	V _S = 5V, Gain = 2, R _L = 10k	•	5.96 6.02	6.1	5.96	6.02	6.1	/dB	
22.0	V _S = 5V, Gain = 4, R _L = 10k	•	11.85 12.02	12.15	11.85	12.02	12.15	/ dB	
33.8	V _S = 5V, Gain = 8, R _L = 10k	•	17.85 18	18.15	17.85		18.15	/ dB	
	$V_S = 5V$, Gain = 8, $R_L = 500\Omega$	•	17.65 17.9	18.15	17.6	17.9	18.15/	dB	
	-V _S = 5V, Gain = 16, R _L = 10k	•	23.85 24	24.15	23.78	34	24.15	dB	
	V _S = 5V, Gain = 32, R _L = 10k	•	29.7 30	30.2	29.7	/30	36.2	dB	
	V _S = 5V, Gain = 64, R _L = 10k	•	35.6 35.9	36.2	35.5			dB	
	$V_S = 5V$, Gain = 64, $R_L = 500\Omega$	•	34.8 35.5	36	34.2	35.5	36	dB	
353 —	$V_S = \pm 5V$, Gain = 1, $R_L = 10k$ $V_S = \pm 5V$, Gain = 1, $R_L = 500\Omega$:	-0.05 0 -0.1 -0.01	0.07	-0.05	0 -0.01	0.07	dB dB ₂	33.8
555	Vs = ±5V, Gain = 2, RL = 10k	•	5.96 6.02	6.1	5.96	6.02	6.1	dB	1
35.3 <	$V_S = \pm 5V$, Gain = 4, R ₁ = 10k	•	11.9 12.02		_	12.02			35.3
34.2	V _S = ±5V, Gain = 8, R ₁ = 10k	•	17.85 18	18.15	17.85	18	18.15/	dB.	7
	$V_S = \pm 5V$, Gain = 8, $R_L = 500\Omega$	•	17.80 17.95		17.72			₫B	
	Vs = ±5V, Gain = 16, R(= 10k	•	23.85 24	24.15	23.8	24	24.15	dB	
	V _S = ±5V, Gain = 32, B _L = 10k	•	29.85 30	30.15	29.78	38	30.15/	dB	
	V _S = ±5V, Gain = 64, R _L = 10k	•	35.7 35.95	36.2	35.7	35.95	_	dB	
	$V_S = \pm 5V$, Gain = 64, $R_L = 500\Omega$	•	35.2 35.8	36.2	34.8	35.8	36.2	dB	
Offset Voltage Magnitude (Internal Op Amp) (Vos(OA)) (Note 8)		•	1.5	9		1.5	11	mV	
Offset Voltage Drift (Internal Op Amp) (Note 8)		•	6			8		μV/°C	
Offset Voltage Magnitude	Gain = 1	•	3	15		3	17	mV	
(Referred to "IN" Pin) (V _{OS(IN)})	Gain = 8	•	2	10		2	12	mV	
DC Input Resistance (Note 9)	DC V _{IN} = 0V Gain = 0		>100			>100		MΩ	
	Gain = 1	•	10			10		kΩ	
	Gain = 2	•	5			5		kΩ	
	Gain = 4 Gain = 8, 16, 32, 64	:	2.5 1.25			2.5 1.25		kΩ kΩ	
	Gail - 0, 10, 32, 04	•	1.20			1.20		n52	

TUNEAR

8910123N

7