NLAS325

Dual SPST Analog Switch, Low Voltage, Single Supply

The NLAS325 is a dual SPST (Single Pole, Single Throw) switch, similar to $1 / 2$ a standard 4066 . The device permits the independent selection of 2 analog/digital signals. Available in the Ultra-Small 8 package.

The use of advanced 0.6μ CMOS process, improves the R_{ON} resistance considerably compared to older higher voltage technologies.

Features

- On Resistance is 20Ω Typical at 5.0 V
- Matching is $<1.0 \Omega$ Between Sections
- 2.0-6.0 V Operating Range
- Ultra Low < 5.0 pC Charge Injection
- Ultra Low Leakage $<1.0 \mathrm{nA}$ at $5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$
- Wide Bandwidth > $200 \mathrm{MHz},-3.0 \mathrm{~dB}$
- 2000 V ESD (HBM)
- R_{ON} Flatness $\pm 6.0 \Omega$ at 5.0 V
- Independent Enables; One Positive, One Negative
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Pinout

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

(Note: Microdot may be in either location)

PIN ASSIGNMENT		
N	NO1	
2 C	COM1	
3 IN	IN2	
4 G	GND	
5 N	NC2	
6 C	COM2	
$7{ }^{7}$	IN1	
8 V	V_{CC}	
FUNCTION TABLE		
On/Off Enable Input	Analog Switch 1	Analog Switch 2
L	Off	On
H	On	Off

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

NLAS325

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage	-0.5 to +7.0	V
V_{1}	DC Input Voltage	-0.5 to +7.0	V
V_{O}	DC Output Voltage	-0.5 to +7.0	V
I_{IK}	DC Input Diode Current $\quad \mathrm{V}_{1}<$ GND	-50	mA
lok	DC Output Diode Current $\quad \mathrm{V}_{\mathrm{O}}<$ GND	-50	mA
${ }^{\circ} \mathrm{O}$	DC Output Sink Current	± 50	mA
I_{CC}	DC Supply Current per Supply Pin	± 100	mA
IGND	DC Ground Current per Ground Pin	± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1.0 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature under Bias	+ 150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Note 1)	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$	250	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\mathrm{ESD}}$	ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\begin{gathered} >2000 \\ >200 \\ \text { N/A } \end{gathered}$	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2-ounce copper trace with no air flow.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage		2.0	5.5	V
$\mathrm{V}_{\text {IN }}$	Digital Select Input Voltage		GND	5.5	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage (NC, NO, COM)		GND	V_{CC}	V
T_{A}	Operating Temperature Range		-55	+ 125	${ }^{\circ} \mathrm{C}$
$t_{\text {f }}, t_{f}$	Input Rise or Fall Time, SELECT	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DEVICE JUNCTION TEMPERATURE VERSUS
TIME TO 0.1% BOND FAILURES
TIME TO 0.1\% BOND FAILURES

Junction Temperature ${ }^{\circ} \mathbf{C}$	Time, Hours	Time, Years
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Figure 2. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Condition	V_{cc}	Guaranteed Limit			Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Select Inputs		2.0	1.5	1.5	1.5	V
			2.5	1.9	1.9	1.9	
			3.0	2.1	2.1	2.1	
			4.5	3.15	3.15	3.15	
			5.5	3.85	3.85	3.85	
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage, Select Inputs		2.0	0.5	0.5	0.5	V
			2.5	0.6	0.6	0.6	
			3.0	0.9	0.9	0.9	
			4.5	1.35	1.35	1.35	
			5.5	1.65	1.65	1.65	
IN	Maximum Input Leakage Current, Select Inputs	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	0 V to 5.5 V	± 0.2	± 2.0	± 2.0	$\mu \mathrm{A}$
$I_{\text {cc }}$	Maximum Quiescent Supply Current	Select and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\text {CC }}$ or GND	5.5	4.0	4.0	8.0	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS - Analog Section

Symbol	Parameter	Condition	V_{cc}	Guaranteed Limit			Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
RON	Maximum "ON" Resistance (Figures 16-22)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}} \leq 10 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 85 \\ & 45 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 95 \\ & 50 \\ & 35 \\ & 30 \end{aligned}$	$\begin{gathered} 105 \\ 55 \\ 40 \\ 35 \end{gathered}$	Ω
RFLAT(ON)	ON Resistance Flatness (Figures 16 - 22)	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\text {IN }} \leq 10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IS}}=1.0 \mathrm{~V}, 2.0 \mathrm{~V}, 3.5 \mathrm{~V} \end{aligned}$	4.5	4.0	4.0	5.0	Ω
InC(OFF) $I_{\text {NO(OFF) }}$	NO or NC Off Leakage Current (Figure 8)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.0 \mathrm{~V}_{\mathrm{COM}} 4.5 \mathrm{~V} \end{aligned}$	5.5	1.0	10	100	nA
$\mathrm{I}_{\text {COM (ON) }}$	COM ON Leakage Current (Figure 8)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$ $\mathrm{V}_{\mathrm{NO}} 1.0 \mathrm{~V}$ or 4.5 V with V_{NC} floating or $\mathrm{V}_{\mathrm{NO}} 1.0 \mathrm{~V}$ or 4.5 V with V_{NO} floating $\mathrm{V}_{\text {COM }}=1.0 \mathrm{~V}$ or 4.5 V	5.5	1.0	10	100	nA

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	V_{Cc} (V)	$\mathrm{V}_{\text {IS }}$ (V)	Guaranteed Maximum Limit							Unit
					$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$			$<85^{\circ} \mathrm{C}$		$<125^{\circ} \mathrm{C}$		
					Min	Typ*	Max	Min	Max	Min	Max	
ton	Turn-On Time (Figures 11 and 12)	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 4 and 5)	2.5	2.0	5.0	23	35	5.0	38	5.0	41	ns
			3.0	2.0	5.0	16	24	5.0	27	5.0	30	
			4.5	3.0	2.0	11	16	2.0	19	2.0	22	
			5.5	3.0	2.0	9.0	14	2.0	17	2.0	20	
toff	Turn-Off Time (Figures 11 and 12)	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 4 and 5)	2.5	2.0	1.0	7.0	12	1.0	15	1.0	18	ns
			3.0	2.0	1.0	5.0	10	1.0	13	1.0	16	
			4.5	3.0	1.0	4.0	6.0	1.0	9.0	1.0	12	
			5.5	3.0	1.0	3.0	5.0	1.0	8.0	1.0	11	
$\mathrm{t}_{\text {BBM }}$	Minimum Break-Before-Make Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=3.0 \mathrm{~V}(\text { Figure } 3) \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	2.5	2.0	1.0	12		1.0		1.0		ns
			3.0	2.0	1.0	11		1.0		1.0		
			4.5	3.0	1.0	6.0		1.0		1.0		
			5.5	3.0	1.0	5.0		1.0		1.0		

${ }^{*}$ Typical Characteristics are at $25^{\circ} \mathrm{C}$.

		Typical @ 25, $\mathbf{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	
	Maximum Input Capacitance, Select Input	8.0	pF
C_{IN}	10		
C_{NO} or C_{NC}	Analog I/O (switch off)	10	
$\mathrm{C}_{\mathrm{COM}}$	Common I/O (switch off)	20	
$\mathrm{C}_{(\mathrm{ON})}$	Feedthrough (switch on)	20	

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

Symbol	Parameter	Condition	V_{cc} (V)	Typical	Unit
				$25^{\circ} \mathrm{C}$	
BW	Maximum On-Channel -3.0 dB Bandwidth or Minimum Frequency Response (Figure 10)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm}$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 6)	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 145 \\ & 170 \\ & 175 \end{aligned}$	MHz
$\mathrm{V}_{\text {ONL }}$	Maximum Feedthrough On Loss	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm} @ 100 \mathrm{kHz}$ to 50 MHz V_{IN} centered between V_{CC} and GND (Figure 6)	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline-2.0 \\ & -2.0 \\ & -2.0 \end{aligned}$	dB
VISO	Off-Channel Isolation (Figure 9)	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\text {IS }}=1.0 \mathrm{~V}$ RMS V_{IN} centered between V_{CC} and $G N D$ (Figure 6)	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & -93 \\ & -93 \\ & -93 \end{aligned}$	dB
Q	Charge Injection Select Input to Common I/O (Figure 14)	$\begin{aligned} & V_{I N}=V_{C C} \text { to } G N D, F_{I S}=20 \mathrm{kHz} \\ & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns} \\ & \mathrm{R}_{I S}=0 \Omega, C_{\mathrm{L}}=1000 \mathrm{pF} \\ & \mathrm{Q}=\mathrm{C}_{\mathrm{L}}{ }^{*} \Delta \mathrm{~V}_{\text {OUT }} \end{aligned}$ (Figure 7)	$\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \end{aligned}$	pC
THD	Total Harmonic Distortion THD + Noise (Figure 13)	$\begin{aligned} & \mathrm{F}_{\text {IS }}=20 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=\text { Rgen }=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{IS}}=5.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \end{aligned}$	5.5	0.1	\%
VCT	Channel-to-Channel Crosstalk	$\begin{aligned} & \hline \mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\text {IS }}=1.0 \mathrm{~V} \text { RMS } \\ & \mathrm{V}_{\text {IN }} \text { centered between } \mathrm{V}_{\mathrm{CC}} \text { and } \mathrm{GND} \\ & \text { (Figure 6) } \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & -90 \\ & -90 \end{aligned}$	dB

NLAS325

Figure 3. t_{BB} (Time Break-Before-Make)

Figure 4. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 5. ton/toff

NLAS325

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ or $\mathrm{V}_{\text {IN }}$ at 100 kHz
$V_{\text {ONL }}=$ On Channel Loss $=20 \log \left(\frac{V_{\text {OUT }}}{V_{\text {IN }}}\right)$ for $V_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth (BW) = the frequency 3.0 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω
Figure 6. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/VONL

Figure 7. Charge Injection: (Q)

Figure 8. Switch Leakage vs. Temperature

Figure 9. Off-Channel Isolation

Figure 11. t_{ON} and $\mathrm{t}_{\mathrm{OFF}} \mathrm{vs} . \mathrm{V}_{\mathrm{CC}}$ at $25^{\circ} \mathrm{C}$

Figure 13. Total Harmonic Distortion Plus Noise vs. Frequency

Figure 10. Typical Bandwidth and Phase Shift

Figure 12. $t_{\text {ON }}$ and toff $^{\text {vs. Temp }}$

Figure 14. Charge Injection vs. COM Voltage

Figure 15. I_{Cc} vs. Temp, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ and 5.0 V

Figure 17. $\mathrm{R}_{\mathrm{ON}} \mathrm{vs}$ Temp, $\mathrm{V}_{\mathrm{Cc}}=2.0 \mathrm{~V}$

Figure 19. Row vs. Temp, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Figure 16. R_{ON} vs. $\mathrm{V}_{\mathrm{CC}}, \mathrm{Temp}=25^{\circ} \mathrm{C}$

Figure 18. R_{ON} vs. Temp, $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$

Figure 20. $\mathrm{R}_{\mathrm{ON}} \mathrm{vs}$. Temp, $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

NLAS325

Figure 21. R_{ON} vs. Temp, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Figure 22. R $_{\mathrm{ON}}$ vs. $\mathrm{Temp}^{\mathrm{V}} \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

ORDERING INFORMATION

Device Order Number	Package Type	Tape and Reel Shippingize \dagger
NLAS325USG	US8	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

US8
CASE 493
ISSUE E
DATE 30 APR 2021

SCALE 4 :1

RECDMMENDED
MLUNTING FIDTPRINT

DETAIL E

NOTES:

1. DIMENSIDNING AND TZLERANCING PER ANSI Y14.5M, 1982.
2. CDNTROLLING DIMENSIDN: MILLIMETERS
3. DIMENSIUN A DDES NDT INCLUDE MDLD FLASH, PRDTRUSIDN, IR GATE BURR. MDLD FLASH, PRDTRUSIDN, IR GATE BURR SHALL NDT EXCEED 0.14 ($0.0055^{\prime \prime}$) PER SIDE.
4. DIMENSIDN B DDES NDT INCLUDE INTERLEAD FLASH $\square R$ PRITRUSIDN. INTERLEAD FLASH AND PRDTRUSIUN SHALL NDT EXCEED 0.14 (0.0055°) PER SIDE.
5. LEAD FINISH IS SULDER PLATING WITH THICKNESS DF 0.0076-0.0203 MM (0.003-0.008").
6. ALL TZLERANCE UNLESS DTHERWISE SPECIFIED $\pm 0.0508 \mathrm{MM}\left(0.000^{\circ}\right)$.

DIM	MILLIMETERS		INCHES			
	MIN.	MAX.	MIN.	MAX.		
A	1.90	2.10	0.075	0.083		
B	2.20	2.40	0.087	0.094		
C	0.60	0.90	0.024	0.035		
D	0.17	0.25	0.007	0.010		
F	0.20	0.35	0.008	0.014		
G	0.50		BSC	0.020		BSC
H	0.40		REF	0.016		REF
J	0.10	0.18	0.004	0.007		
K	0.00	0.10	0.000	0.004		
L	3.00	3.25	0.118	0.128		
M	0°	66°	0°	$6{ }^{\circ}$		
N	0°	10°	0°	10°		
P	0.23	0.34	0.010	0.013		
R	0.23	0.33	0.009	0.013		
S	0.37	0.47	0.015	0.019		
U	0.60	0.80	0.024	0.031		
V	0.12		BSC	0.005		BSC

GENERIC MARKING DIAGRAM*

XX	$=$ Specific Device Code
M	$=$ Date Code
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AONO4475D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | US8 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

