
September 2017 DocID030324 Rev 2 1/37

1

 AN5011
Application note

SPC58xCx/SPC58xG8x Getting Started

Introduction

This Application Note is aimed to describe the basic steps of the device boot flow of the
SPC58xCx and SPC58xG8x devices, in order to support mostly software developers and
application programmers in the design of applications to implement all the needed steps for
using the microcontroller. It tries to be as much as possible independent from any adopted
toolchain, thus without relying upon any runtime libraries for the start-up phase.

The boot flow here considered starts from the power-on and ends when the MCU has
started execution of the user application. Considering the scope and goals of this document,
the most important blocks of the MCU are the CPUs and the IPs involved on the reset
process, that are shortly described later on. Further a brief description of the reset process
is given.

To help with the understanding of the boot flow and the corresponding device configuration,
some assembly and C code is included and commented purely as reference. It is based on
a simple bare code distributed with the ST SPC5-STUDIO free tool available from ST
website.

Despite SPC58xCx and SPC58xG8x are targeting different automotive application domains,
and have some differences in terms of types/configurations and/or instances of peripheral
IPs, different flash and system memory sizes, or targeting different safety levels (ASIL-B vs
ASIL-D), or different packaging solutions, as far as the system start-up flow is concerned,
they have many things in common so that can be described in an unique document. In case
of specific settings are required depending on device characteristic then they are specifically
highlighted.

Limitations

The initialization flow described in this application note doesn’t include any safety/security
topics as well as any special memory handling like internal memory remapping or memory
protection levels.

It is intended that this application note is read along with the SPC58xCx/SPC58xG8x
Reference Manuals, that can be obtained from the STMicroelectronics website at
http://www.st.com (see A.1: 2, 3).

www.st.com

http://www.st.com

Contents AN5011

2/37 DocID030324 Rev 2

Contents

1 Architecture overview . 5

1.1 SPC58xCx architecture overview . 5

1.2 SPC58xG8x architecture overview . 6

1.3 MCU Cores features . 8

1.4 Reset and boot . 9

2 SPC58xCx/SPC58xG8x system start-up . 13

2.1 Start-up flow (high-level view) . 14

2.2 Start-up code explained . 15

2.2.1 System initialization . 15

2.2.2 EABI “C runtime” initialization . 21

2.2.3 Early Platform initialization . 22

2.2.4 DATA sections handling . 30

2.2.5 Late platform initialization and main jump . 31

2.3 Multicore system startup . 32

2.3.1 Multi-core boot (by CPU) . 32

2.3.2 Multi-core boot (by BAF) . 34

Appendix A Further Information . 35

A.1 Reference documents . 35

A.2 Acronyms and abbreviations. 35

Revision history . 36

DocID030324 Rev 1 3/37

AN5011 List of tables

3

List of tables

Table 1. SPC58ECx core memory configuration . 9
Table 2. SPC58NG8x core memory configuration . 9
Table 3. Boot record structure searched by the SSCM . 10
Table 4. Boot record structure searched by the BAF . 11
Table 5. CPU enable flags . 12
Table 6. Chip modes of operation. 27
Table 7. ME_CADDRx/ME_CCTLx registers mapping. 33
Table 8. Acronyms and abbreviations . 35
Table 9. Document revision history . 36

List of figures AN5011

4/37 DocID030324 Rev 2

List of figures

Figure 1. SPC58ECx Block diagram . 6
Figure 2. SPC58NG8x Block diagram . 8
Figure 3. Boot CPU start-up sequence . 11

DocID030324 Rev 2 5/37

AN5011 Architecture overview

36

1 Architecture overview

In this chapter it is described a short overview of the two devices firstly. Then some more
detailed information on the core configuration is provided as they are key for the goal of this
application note.

1.1 SPC58xCx architecture overview

The SPC58xCx device is a 32-bit Power Architecture microcontroller for automotive
ASIL-B applications, targeting vehicle body and gateway such as:

 Central body controller

 Smart junction box

 Mid and high end gateway

The device in the full featured configuration is equipped with two symmetrical e200z420
CPUs @180 MHz (named core_0 and core_2), featured with Local D-RAM (D-MEM),
Instruction (I-Cache) and Data Cache (D-Cache) to increase system performance. It also
includes enhancements aimed to fulfil safety requirement (e2e ECC, core MPU).

It also includes one e200z0 CPU @100 MHz into the Hardware Security Module (HSM).

Apart of the processor local memory and caches, the platform is equipped with on-chip flash
memory (and related flash controller) and on-chip general –purpose System SRAM.

Both CPUs are connected to the external memories and I/O peripheral devices through a
64-bit Cross Bar Switch (XBAR). For a detailed description of all the devices and interfaces
and all the other features implemented by the platform refer to the SPC58xCx Reference
Manual (see A.1: 1, 2).

The top-level block diagram below gives an overview of the microcontroller architecture.

Architecture overview AN5011

6/37 DocID030324 Rev 2

Figure 1. SPC58ECx Block diagram

1.2 SPC58xG8x architecture overview

The SPC58xG8x device is a 32-bit Power Architecture microcontroller for automotive ASIL-
D applications, targeting body automotive domain, more specifically:

 Integrated chassis control, high-end steering and braking

 High-end central body controller, smart junction boxes, stand-alone and integrated
gateway

 In general any safety critical application requiring a very high level of safety integrity

De
lay

ed
 L

oc
k-

ste
p

wi
th

 R
ed

un
da

nc
y

Ch
ec

ke
rs

De
lay

ed
 L

oc
k-

ste
p

wi
th

 R
ed

un
da

nc
y

Ch
ec

ke
rs

Instruction
32 ADD

64 DATA

Load / Store
32 ADD

64 DATA

M4 M5

FLASH
4 MB

EEPROM
4x32 KB

Non Volatile Memory
Multiple RWW partitions

256 Page Line

EFPU2VLE

Core Memory Protection Unit
(CMPU)

e200 z420n3 – 180 MHz
dual issue
Main Core_0

Nexus3p

BIU with E2E ECC
Decorated Storage Access

SWT_0 IAC

S5
System Memory Protection Unit

Cross Bar Switch (XBAR) AMBA 2.0 v6 AHB – 64 bits

Unified
Backdoor
Interface

With
E2E ECC

S7

Periph.
Bridge 2
E2E ECC

Peripheral
Cluster 2

32 ADD
64 DATA

32 ADD
32 DATA

Periph.
Bridge 1
E2E ECC

Peripheral
Cluster 1

32 ADD
64 DATA

32 ADD
32 DATA

PRAMC_3
with E2E

ECC

32 ADD
64 DATA

SRAM
Array 3
128 KB

32 ADD
64 DATA

PRAMC_2
with E2E

ECC

32 ADD
64 DATA

SRAM
Array 2
256 KB

32 ADD
64 DATA

PFLASHC_1
Set-Associative Prefetch

Buffers
with E2E ECC

32 ADD
64 DATA

S4 S2 S0 S1S6

M0 M1

S3

SPUDCIJTAGCJTAGM NPC

32 ADD
64 DATA

Fl
ex

Ra
y_

0

M3

Nexus Data
Trace

ET
HE

RN
ET

_0

Nexus Data
Trace

HSM

32 ADD
64 DATA

32 ADD
64 DATA

M2

Concentrator_1
E2E ECC

PAMU

SWT_2 IAC

De
lay

ed
 L

oc
k-

ste
p

wi
th

 R
ed

un
da

nc
y

Ch
ec

ke
rs

Instruction
32 ADD

64 DATA

Load / Store
32 ADD

64 DATA

e200 z420n3 – 180 MHz
dual issue
Main Core_2

Nexus3p

VLE EFPU2

Unified
Backdoor
Interface

With
E2E ECC

Core Memory Protection Unit
(CMPU)

BIU with E2E ECC
Decorated Storage Access

INTC

I-Cache
Control

8 KB
2 way

D-MEM
Control

64 KB
D-MEM

D-Cache
Control

4 KB
2 way

I-Cache
Control

8 KB
2 way

D-MEM
Control

64 KB
D-MEM

D-Cache
Control

4 KB
2 way

SI
PI

_1

Nexus Data
Trace

32 ADD
64 DATA

M6

32 ADD
64 DATA

DM
A

CH
M

UX
_1

64 Ch
eDMA_1

DM
A

CH
M

UX
_2

DM
A

CH
M

UX
_0

DM
A

CH
M

UX
_3

DocID030324 Rev 2 7/37

AN5011 Architecture overview

36

Differently from the SPC58xCx device, the SPC58xG8x in the full featured configuration is
equipped with six PowerPC CPUs (some in Delayed Lock-Step mode) distributed across
two different computing shells and the HSM as below:

 Computing Shell 0

– 2 x e200z420 @180 MHz (namely core_0 and core_1)

– 1 x e200z419 @180 MHz (named core_0 checker) paired to core_0 in delayed
lock-step mode

 Computing Shell 1

– 1 x e200z425 @180 MHz (named core_2) with enhancements for DSP algorithms

– 1 x e200z425 @180 MHz (named core_2 checker) paired to core_2 in delayed
lock-step mode

 Hardware Security Module (HSM)

– 1 x e200z0 @90 MHz

Differently from the cores available into the SPC58xCx device, the configuration of the six
cores on SPC58xG8x MCU differs in terms of local memory and cache configuration.

This has some impacts on the configuration to be implemented by the software boot code as
it is highlighted later.

Both Computing Shell 0 and 1 are connected to all the peripherals through two identical
Fast Cross Bar Switches, 64-bit wide @180MHz, named respectively XBAR_0 and
XBAR_1. A detailed description of the whole MCU architecture is out of the scope of such
application note; for a fully comprehensive view refer to the related Reference Manual (see
A.1: 2, 3).

The top-level block diagram below gives an overview of the microcontroller architecture.

Architecture overview AN5011

8/37 DocID030324 Rev 2

Figure 2. SPC58NG8x Block diagram

1.3 MCU Cores features

All CPUs are compatible with the Power Architecture VLE instruction set which supports
some code size reduction. The Power Architecture has enhancements that improve the
architecture’s fit in embedded applications.

From a software perspective, every bus master device (CPUs, DMA, SIPI, Ethernet,
FlexRay) sees each memory (RAM modules, Flash) and peripherals in a consistent, flat
memory map.

As reported in previous sections, the cores available in the computing shells on both MCUs
are not perfectly identical. They have some slightly different configurations that have
impacts on the configuration to be implemented into the software start-up code, that is the
main focus of this application note, so it is worth to highlight what the differences are in
terms on CPU local memory (D-MEM and/or I-MEM) and CPU cache (D-Cache and/or I-
Cache). In the tables below it is possible to have an overall view of the main differences
across all the CPU instances.

8 KB
2 way

D-Cache
ControlFl

ex
Ra

y_
0

Buddy Device
Interface

Fast Cross Bar Switch (XBAR_0) AMBA 2.0 v6 AHB – 64 bit – 180 MHz

System Memory Protection Unit (SMPU_0)

AHB_M7

De
lay

ed
 L

oc
k-

ste
p

wi
th

 R
ed

un
da

nc
y

Ch
ec

ke
rs

PFLASHC_0 180 MHz
Set-Associative
Prefetch Buffers
with E2E ECC

ET
HE

RN
ET

_0

HS
M32 ADD

64 DATA

EFPU2

I-Cache
Control

D-Cache
Control

VLE

D-MEM
Control

8 KB
2 way

4 KB
2 way

64 KB
D-MEM

Core Memory Protection Unit
(CMPU)

e200 z420n3 – 180 MHz
dual issue
Main Core_1

Nexus3p

BIU with E2E ECC
Decorated Storage Access

SWT_1 IAC

Unified
Backdoor
Interface

With
E2E ECC

De
lay

ed
 L

oc
k-

ste
p

wi
th

 R
ed

un
da

nc
y

Ch
ec

ke
rs

DM
A

CH
M

UX
_1

64 Ch
eDMA_1

32 ADD
64 DATA

32 ADD
64 DATA

Instruction
32 ADD

64 DATA

Load / Store
32 ADD

64 DATA

Instruction
32 ADD

64 DATA

Load / Store
32 ADD

64 DATA

AHB_M6 AHB_M5AHB_M4 M2 M3 M0 M1

32 ADD
64 DATA32 ADD

64 DATA

FLASH 4 MB

EEPROM
2x2x64 KB

Non Volatile Memory
Multiple RWW partitions

256 Page Line

AMU

S5

EFPU2VLE

Core Memory Protection Unit
(CMPU)

e200 z420n3 – 180 MHz
dual issue
Main Core_0

Nexus3p

BIU with E2E ECC
Decorated Storage Access

SWT_0 IAC

All shadowed
modules are in

delyed Lock-step
configuration

I-MEM
Control

16 KB
I-MEM

I-Cache
Control

8 KB
2 way

64 KB
D-MEM

I-MEM
Control

16 KB
I-MEM

DM
A

CH
M

UX
_2

DM
A

CH
M

UX
_0

DM
A

CH
M

UX
_3 SWT_2 IAC

De
lay

ed
 L

oc
k-

ste
p

wi
th

 R
ed

un
da

nc
y

Ch
ec

ke
rs

Instruction
32 ADD

64 DATA

Load / Store
32 ADD

64 DATA

DM
A

CH
M

UX
_5

32 Ch
eDMA_0

DM
A

CH
M

UX
_4

SI
PI

_0
 (i

nt
er

pr
oc

es
so

r)

32 ADD
64 DATA

E2E ECC
PAMU
90 MHz

Nexus Data
Trace

32 ADD
64 DATA

S5

M5 M6

System Memory Protection Unit (SMPU_1)

Fast Cross Bar Switch (XBAR_1) AMBA 2.0 v6 AHB – 64 bit – 180 MHz

E2E ECC
PAMU
90 MHz

Nexus Data
Trace

4 KB
2 way

S6
S7

Periph. Bridge
AIPS_0

E2E ECC
180 MHz

Peripheral
Cluster 0
45 & 180

MHz

32 ADD
32 DATA

PRAMC_0
with E2E

ECC
180 MHz

32 ADD
64 DATA

SRAM
Array 0
128 KB

32 ADD
64 DATA

PRAMC_1
with E2E

ECC
180 MHz

32 ADD
64 DATA

SRAM
Array 1
160 KB

32 ADD
64 DATA

PFLASHC_1 180 MHz
Set-Associative
Prefetch Buffers
with E2E ECC

32 ADD
64 DATA

Buddy
Device

Interface

NAR
AHB

S0 S1
S6S7

M3 M2 M0 M1 M4 M5

S1 S0 S2 S3 S4

Nexus Data
Trace

Nexus Data
Trace

e200 z425n3 – 180 MHz
dual issue
Main Core_2

Nexus3p

VLE EFPU2 LSP

I-MEM
Control

I-Cache
Control

16 KB
I-MEM

8 KB
2 way

Unified
Backdoor
Interface

With
E2E ECC

D-MEM
Control

32 KB
D-MEM

Core Memory Protection Unit
(CMPU)

BIU with E2E ECC
Decorated Storage Access

32 ADD
64 DATA

INTC_1

32 ADD
64 DATA

FLASH 2 MB

SPUDCIJTAGCJTAGM Nexus Aurora Router

SI
PI

_1
 (D

eb
ug

)

32 ADD
64 DATA

Unified
Backdoor
Interface

With
E2E ECC

D-Cache
Control

D-MEM
Control

Nexus Data
Trace

ET
HE

RN
ET

_1

32 ADD
64 DATA

M4

PRAMC_3
with E2E ECC

180 MHz

32 ADD
64 DATA

SRAM
Array 3
64 KB

32 ADD
64 DATA

S3

Periph. Bridge
AIPS_1

E2E ECC
45 MHz

Peripheral
Cluster 1
45 MHz

32 ADD
64 DATA

32 ADD
32 DATA

S4

Periph. Bridge
AIPS_2

E2E ECC
180 MHz

Peripheral
Cluster 2
45 & 180

MHz

32 ADD
64 DATA

32 ADD
32 DATA

PRAMC_2
with E2E ECC

180 MHz

32 ADD
64 DATA

SRAM
Array 2
256 KB
STDBY

32 ADD
64 DATA

S2

Overlay
RAM 16

KB

Overlay
RAM 16

KB

Concentrator_2
E2E ECC
PAMU
45 MHz

Concentrator_1
E2E ECC
PAMU
45 MHz

Concentrator_0
E2E ECC
PAMU
90 MHz

DocID030324 Rev 2 9/37

AN5011 Architecture overview

36

As it can be seen from the Table 2, on SPC58xG8x device the boot code running on core_0
and core_1 needs to take into account the presence of the D-Cache that is not available on
the core_2. And also in order to re-use the same start-up software to boot-up core_0 and
core_2 on the SPC58xCx micro, it needs to take into account that the I-MEM is not present
(see Table 1). This different memory configuration has impacts on the software memory
map as the start-up code cannot be loaded into the I-MEM to gain better performance.

1.4 Reset and boot

The power-up reset sequence always begins with the application of the power and follows
different sequences depending on the condition of the SPC58xCx/SPC58xG8x family
devices and various chip modes enabled from settings in the DCF records.

There are several modules used to step through the sequence needed to properly reset the
SPC58xCx/SPC58xG8x and prepare it to fetch the first instruction of the user application
code. These are briefly described here thereafter:

 Power Management Controller (PCM): it controls and monitors various voltage levels
around the chip

 Reset Generation Module (RGM): it’s a state machine, not executing program code. It
centralizes the various reset sources and manages the reset sequence.

 System Status and Configuration Module (SSCM): it’s a state machine as well. It’s in
charge to deliver the initial device configuration. It has a role in the boot-up process as
responsible to locate the boot vector from flash device (for boot core and eventually for
the HSM secure core)

 Mode Entry Module (MC_ME): it configures device execution mode and delivers reset
vectors to all cores. It has an important role in the multi-core boot-up configuration.

 Self-Test Control Unit (STCU2): it runs the Logic Built-in Self-Test (LBIST) and Memory
Built-in Self-Test (MBIST) for safety needs.

The reset procedure is a complex flow that involves all module above and each of them
evolves through the respective finite machine states. Each module depending on the stage
of the reset could provide different trigger signals to the other module, so that starting from

Table 1. SPC58ECx core memory configuration

Core instance Core type D-MEM I-MEM D-Cache I-Cache

core_0, core_2 e200z420n3 64 KB None 4 KB 8 KB

HSM core e200z0 None None None none

Table 2. SPC58NG8x core memory configuration

Core instance Core type D-MEM I-MEM D-Cache I-Cache

core_0, core_1 e200z420n3 64 KB 16 KB 4 KB 8 KB

core_2 e200z425n3 32 KB 16 KB None 8 KB

Checker core_0 e200z419 None None None None

Checker core_2 e200z425n3 32 KB 16 KB None 8 KB

HSM core e200z0 None None None None

Architecture overview AN5011

10/37 DocID030324 Rev 2

the power-on, the MCU will reach into the IDLE[FUNC] state where finally the MCU is able
to executing code.

For a more detailed description of the reset flow refer to the chapter 8 of the Reference
Manual (see A.1: 2, 3).

In fact at the end of the reset sequence, there is always only one core (named Boot CPU)
that is automatically woken-up (optionally the secure HSM core is started as well,
depending on the hardware configuration). On Chorus devices the role of Boot CPU is
played by Core_2. It then performs all the needed system initialization tasks and once done
it is ready to execute user application.

In the next section the system boot-up code will be described assuming a single core boot
configuration. Refer to the dedicated section for the multicore use case.

The Core_2 reset vector, read by the SSCM from the DCF and then transferred to the core
by mean of the MC_ME module, will always point to a location into the Boot Assist Flash.
Depending on the system configuration stored into the DCF BAF record into the flash, the
Boot CPU will either execute the BAF code (located in a specific location into a flash block)
or will start executing the user application code directly. In the latter case, the application
boot address is specified into the so called SSCM boot header, whose structure is described
below:

In case of boot w/o BAF support, the only CPU that is able to execute the application code is
the Boot CPU. Application code will be in charge to execute all the steps required to wake
up the other secondary cores in case of a multicore application. This will be described later.

If the BAF code is instead executed, the boot address is retrieved by the software in a
similar way done by the SSCM. For detail on the lookup algorithm refer to the corresponding
Reference Manual (see A.1: 2, 3).

Table 3. Boot record structure searched by the SSCM

Offset Field description

0x4 Application start address

0x0 SSCM Boot Record Tag (A5h) Reserved

DocID030324 Rev 2 11/37

AN5011 Architecture overview

36

Figure 3. Boot CPU start-up sequence

The BAF Boor header has a slightly different structure compared to the SSMC boot record
as shown in Figure 3. In this case it is possible to have a more flexible boot configuration. It
is possible to specify which CPU will be woken-up by writing the CPU enable flags
accordingly and define different boot address for the different CPUs.

The BAF Boot Record structure is defined below.

Table 4. Boot record structure searched by the BAF

Offset Field description

0xC CPU_1 Reset vector

0x8 CPU_0 Reset vector

Restart
from

Stand-by ?

BAF_BYPASS
selection

NO

0

Boot from
ME.CADDRBootCpu

YES

Found ?

1

CPU stopped waiting for
watchdog timeout or reset

NOYES

Jump to
Application code

Reset

SSCM

Found
BAF

Configuration
DCF ?

YES

NO

Default = BAF

Search valid
Boot header

BAF

Architecture overview AN5011

12/37 DocID030324 Rev 2

0x4 Boot CPU (CPU_2) Reset vector

0x0 BAF Boot Record Tag (A5h) CPU enable flags (see Table 5)

Table 5. CPU enable flags

16-19 20-23 24-27 28 29 30 31

0000 0000 0000 0 CPU_1 CPU_0 CPU_2

Table 4. Boot record structure searched by the BAF (continued)

Offset Field description

DocID030324 Rev 2 13/37

AN5011 SPC58xCx/SPC58xG8x system start-up

36

2 SPC58xCx/SPC58xG8x system start-up

In this section it will be described all the basic and most important initializations that are
required to setup the microcontrollers for executing end-user application. In order to focus
only on the platform initialization, in this section it will be considered the single core boot
scenario only.

As previously mentioned, the CPU reset vectors are retrieved by hardware (via SSCM) or by
software (via BAF code) by inspecting the BAF record. So the code image burned into the
flash partition needs to provide a proper boot record as described below:

SPC58xG8x Boot record

SPC58xCx Boot record

In the single-core boot use case, the code will look like the code above. The reset address
for the other cores is assumed to be available but actually the tag is for one core only.

By providing the proper tag with all the CPU enable flags set, the BAF code will be able to
wake-up all the CPUs and manage the delivery of the start-up address.

The start-up flow is described here thereafter at high level. Then a detailed explanation is
provided for each steps. Further in order to clarify better all the steps needed to initialize and
configure the device, a reference code is also attached implementing the start-up process.

.section .boot, "axv"

.long 0x00A50001 /* Only Core 2 will run

 0x00A50007: Core 0,1 woken-up too

 0x00A50005: Core 1 woken-up too

 0x00A50003: Core 0 woken-up too

 */

.long _reset_address2 /* Core 2 reset address. */

.long _reset_address0 /* Core 0 reset address. */

.long _reset_address1 /* Core 1 reset address. */

.section .boot, "axv"

.long 0x00A50001 /* Only Core 2 will run

 0x00A50003: Core 0 woken-up too

 */

.long _reset_address2 /* Core 2 reset address. */

.long _reset_address0 /* Core 0 reset address. */

SPC58xCx/SPC58xG8x system start-up AN5011

14/37 DocID030324 Rev 2

2.1 Start-up flow (high-level view)

The start-up code is split into five main parts

 System initialization: it concerns all the initialization strictly related to the core itself
(local memories, caches, exception, …) and system memory. These are the first
instructions executed by the CPU once it has been enabled and the reset vector has
been delivered to it. It is implemented in assembly code, into the boot.s file.

 EABI “C runtime” initialization: in order to allow a proper execution of application
code in C language compiled with EABI compliant toolchain, some core registers must
be properly initialized. This is done into the C runtime support assembly file crt.s that is
the trampoline to the application entry point.

 Early platform initialization: this part concerns with the initialization of the
microcontroller platform, covering mostly clocks, power mode, cross-bar, flash
controller in order to guarantee that the microcontroller is properly configured. The
initialization of all other needed peripherals is out of the scope of this application note
and not part anyway of the start-up phase. The early initialization in our reference code
is implemented in C source into the file clock.c

 DATA section handling: Once the basic initialization is done, last few things are
needed before user application can be run. BSS ELF section must be cleared and
initialized DATA sections must be copied from the flash device to the System SRAM.
This is done again in assembly code into the crt.s trampoline. Code is structured to
provide an hook to user application for implementing eventually and optionally any late
initialization. After that the core will jump to the standard ‘main’ C function.

 Late platform initialization: This an optional step provided by the software
infrastructure to perform any option system initialization, optimization and platform
customization that could be aimed to support the specific end user application.
Reference code distributed with this AN will just provide an empty implementation.

Below a more detailed description of the tasks executed into each of the five parts. In the
next section it will be provided a more detailed view and the corresponding code extracted
from the reference example.

 System initialization

– Set PIR register

– Clearing of all core registers

– Clearing of System SRAM

– Clearing of core D-MEM (and I-MEM for SPC58xG8x)

– Branch Target Buffer initialization

– Caches initialization

– Exception vector initialization (IVPR and MSR)

– Relocating image from FLASH into RAM (optional)

– Setup of platform initialization code address

 EABI “C runtime” setup

– Setup process stack

– Initialize SDATA and SDATA2 registers

 Early Platform initialization

– Disable SWT device (optional step)

– SSCM Error handling configuration

DocID030324 Rev 2 15/37

AN5011 SPC58xCx/SPC58xG8x system start-up

36

– Reset sources clearing

– Clock configuration

Oscillator by-pass (optional step)

Clock tree initialization

Enabling XOSC

PLL configuration

– Chip mode of operations setup

 DATA section handling

– Clearing BSS sections

– Copying initialized DATA section from flash to RAM

 Late platform initialization

2.2 Start-up code explained

2.2.1 System initialization

2.2.1.1 Set PIR register

PIR (Processor ID Register) is the Special Purpose Register (SPR) 286. It needs to hold the
CPU number identifier. It can be done by the following code:

2.2.1.2 Clearing of all core registers

The reset values of the General Purpose Registers (GPRs) are undefined. In order to
guarantee a clean startup of the application, it’s a good practice to clear all the registers
before any use. Later, according to the application EABI, some registers needs to be
initialized at some specific values. Clearing GPRs is a key step for the checker cores that
are in lock-step mode. As they will replicate the operations performed by the replicated core,
it’s mandatory that the registers are set in a clear condition.

The assembly code for clearing GPRs, might look like this:

e_li %r0, n /* n {0,1,2} is the CPU number */

mtspr 286, %r0 /* PIR register.*/

/* Clears the internal registers of the calling core. */

_regclear:

 xor %r0, %r0, %r0

 xor %r1, %r1, %r1

/* [SNIP] Repeat for r2 to r29*/

 xor %r30, %r30, %r30

 xor %r31, %r31, %r31

SPC58xCx/SPC58xG8x system start-up AN5011

16/37 DocID030324 Rev 2

It's also useful to cleanup CPU registers that might be stacked. This is necessary also
playing with lockstep core(s), when available.

2.2.1.3 Clearing of System SRAM

As the System SRAM is coupled with an ECC engine, before any access to memory
locations, start-up cope must guarantee that the memory locations are cleared to avoid
generating parity check errors due to garbage values. The assembly code implementing this
step might look like:

mtspr 1,r1

mtcrf 0xFF,r1

mtspr CTR,r1

mtspr SPRG0,r1

mtspr SPRG1,r1

mtspr SPRG2,r1

mtspr SPRG3,r1

mtspr SRR0,r1

mtspr SRR1,r1

mtspr CSRR0,r1

mtspr CSRR1,r1

mtspr MCSRR0,r1

mtspr MCSRR1,r1

mtspr DEAR,r1

mtspr USPRG0,r1

mtspr 62,r1

DocID030324 Rev 2 17/37

AN5011 SPC58xCx/SPC58xG8x system start-up

36

The code consists into a tight loop, where the memory content is cleared at block of 64
bytes, writing the content of (zero-ed) GPRs r16 to r31 using the multiple work store
instruction. It clearly assumes that registers (r16 – r3) have been previously cleared as well.

The start and end SRAM addresses are represented by the linker variables ‘__ram_start’
and ‘__ram_end’ whose values are defined into the application linker script.

2.2.1.4 Clearing of core D-MEM (and I-MEM for SPC58xG8x)

Similarly to System SRAM, the local core memory (including D-MEM and I-MEM where
applicable) needs to be cleared before attempting any access to its location. The start-up
code will perform this step in a similar way to the SRAM, with the following piece of
assembly code:

/* System RAM clearing */

 .align 2

_sysraminit:

 /* Shared RAM.*/

 e_lis %r4, HI(__ram_start__)

 e_or2i %r4, LO(__ram_start__)

 e_lis %r5, HI(__ram_end__)

 e_or2i %r5, LO(__ram_end__)

.sramclrloop:

_NOVLE

 cmpl cr0, %r4, %r5

_VLE

 se_bge .sramclrend

 e_stmw %r16, 0(%r4)

 e_addi %r4, %r4, 64

 se_b .sramclrloop

.sramclrend:

SPC58xCx/SPC58xG8x system start-up AN5011

18/37 DocID030324 Rev 2

Code implementation is pretty similar. The extracted code is applicable to any of the cores.
The example is referring to the core_2 case, as it can be retrieved from the name of the
linker variables defining the memory boundaries (‘__dram2_start’ and ‘__dram2_end’).
Those symbols are defined by the corresponding linker script. A counterpart for Core_0
(and Core_1 in case of SPC58xG8x) must be implemented.

2.2.1.5 Branch Target Buffer initialization

All e200z420n3, e200z419, and e200z425n3 processor cores features a Branch Processing
Unit used to predict and prefetch branch target address. In order to use it, start-up code
must flush, invalidate, configure and enable it by the BTB control register; more specifically
by writing into the BUCSR (Branch Unit Control and Status Register (SPR 1013). It’s
possible to accomplish all the initialization by a single write into the register. Example code
might look like:

/* Core 2 RAM clearing */

 .align 2

_ram2init:

 /* Core 2 DRAM.*/

 e_lis %r4, HI(__dram2_start__)

 e_or2i %r4, LO(__dram2_start__)

 e_lis %r5, HI(__dram2_end__)

 e_or2i %r5, LO(__dram2_end__)

.dram2clrloop:

_NOVLE

 cmpl cr0, %r4, %r5

_VLE

 se_bge .dram2clrend

 e_stmw %r16, 0(%r4)

 e_addi %r4, %r4, 64

 se_b .dram2clrloop

.dram2clrend:

/* BUCSR registers definitions */

#define BUCSR_BPEN 0x00000001

#define BUCSR_BALLOC_BBFI 0x00000200

/* BUCSR default settings */

#define BUCSR_DEFAULT (BUCSR_BPEN | BUCSR_BALLOC_BBFI)

e_li %r3, BUCSR_DEFAULT

mtspr 1013, %r3 /* BUCSR */

DocID030324 Rev 2 19/37

AN5011 SPC58xCx/SPC58xG8x system start-up

36

BPEN (BUCSR[31]) bit if set will enable BTB to predict branches.

BALLOC_BFI mask is used to set BBFI (BUCSR[22]) bit to Flush & Invalidate the BTB. It is
also used to clear the BALLOC (BUCSR[26:27]) bits to allocate BTB for all branches
(backward and forward).

2.2.1.6 Caches initialization

All main cores are equipped with 8 KB of instruction cache. So in order to speed-up program
execution it’s possible to use it since the early stage of the boot process. I-Cache must be
invalidated firstly and then enabled. L1 I-Cache is controlled by L1CSR1 register (L1 Cache
Control and Status Register 1), that is SPR 1011. ICE (L1CSR1[31]) bit if set will enable I-
Cache. ICINV (L1CSR1[30]) bit if set to 1 will initiate an invalidation process in hardware.
When the operation is completed the ICINV bit is reset to 0. It’s also needed to enable the
ECC capability by setting bit ICECE (L1CSR1[15]). Code will look like this.

2.2.1.7 Exception vector initialization (IVPR and MSR)

Another mandatory step in the start-up process is the initialization of the Interrupt Vector
Prefix Register (IVPR) that is used to compute the starting address of the software interrupt
handler, together with the IVORx (Interrupt Vector Offset Register) register.

The symbol ‘__ivpr2_base__” is defined into the linker script. Similarly, the same
initialization is done for all the other cores.

#define L1CSR1_ICE 0x00000001

#define L1CSR1_ICINV 0x00000002

#define L1CSR1_ICECE 0x00020000

#define L1CSR1_DEFAULT (L1CSR1_ICE | L1CSR1_ICECE)

 /* Cache initialization */

_cacheinit:

 /* ICache invalidated and then enabled.*/

 e_li %r3, L1CSR1_ICINV

 mtspr 1011, %r3 /* L1CSR1 */

.iclrwait:

 mfspr %r3, 1011 /* L1CSR1 */

 e_and2i. %r3, L1CSR1_ICINV

 se_bne .iclrwait /* Wait for ICINV bit to be cleared */

 e_lis %r3, HI(L1CSR1_DEFAULT)

 e_or2i %r3, LO(L1CSR1_DEFAULT)

 mtspr 1011, %r3 /* L1CSR1 */

SPC58xCx/SPC58xG8x system start-up AN5011

20/37 DocID030324 Rev 2

Another initialization is related to the Machine State Register (MSR). A suggested default
initialization comprises the following features:

 Bit SPE (MSR[6]): if set, the SPE APU vector instructions execution is enabled

 Bit WE (MSR[13]): if set, Wait State (power management) is enabled

 Bit CE (MSR[14]): if set, Critical Interrupts and Watchdog timers interrupts are enabled

 Bit ME (MSR[19]): if set, Asynchronous Machine Check interrupts are enabled

The code to implement this initialization might look like this:

The code above refers to the core_2. Similarly the same initialization can be done for all the
other CPUs, referring to the corresponding base address for the Interrupt Vector, defined
into the application linker script as well.

2.2.1.8 Relocating image from flash into RAM (optional)

Optionally, the application image stored into the read-only flash partition could be relocated
into the R/W System SRAM to speed-up later access to code and data. So, with the
exception of the .boot0 section, the whole flash image can be copied from flash to RAM. A
properly configured linker script, will define some variable to identify the start, end and size
of the image. This procedure could slightly slow down the boot step, but it will guarantee that
the whole application data and code will later stay in RAM and benefit from increased R/W
accesses. Also, in a late initialization, the D-Cache could be used also to give better
performances.

The code in charge of doing this relocation, will look like:

/* MSR register definitions */

#define MSR_SPE 0x02000000

#define MSR_WE 0x00040000

#define MSR_CE 0x00020000

#define MSR_ME 0x00001000

#define MSR_DEFAULT (MSR_SPE | MSR_WE | MSR_CE | MSR_ME)

 /* Core 2 exception vectors initialization */

 .align 2

_iv2init:

 /* IVPR initialization.*/

 e_lis %r3, HI(__ivpr2_base__)

 e_or2i %r3, LO(__ivpr2_base__)

 mtIVPR %r3

 /* MSR initialization.*/

 e_lis %r3, HI(MSR_DEFAULT)

 e_or2i %r3, LO(MSR_DEFAULT)

 mtMSR %r3

DocID030324 Rev 2 21/37

AN5011 SPC58xCx/SPC58xG8x system start-up

36

Note: This optional step is clearly executed only by the Boot CPU (Core_2).

This is the last step of the system initialization. Booting CPU will continue execution to
perfom the next necessary steps for the C runtime setup, as said implemented in the crt0.s
assembly file.

2.2.2 EABI “C runtime” initialization

According to Power Architecture EABI specification, to allow EABI compliant compilers to
generate user application code that can work properly, some general purpose registers that
play a special role during application execution must be initialized before starting execution
of C code. These are the “special” usage registers:

 GPR1: Stack Frame pointer, set to the base of the stack

 GPR2: Small Data 2 pointer, set to the base of the ELF section .sdata2 plus 32 KB
displacement

 GPR13: Small Data pointer, set to the base of the ELF section .sdata plus 32 KB
displacement

First instruction of the crt0.s assembly file will do exactly this initialization. Code will look like
the following one:

/* Image relocation in RAM */

 e_lis %r4, HI(__ram_reloc_start__)

 e_or2i %r4, LO(__ram_reloc_start__)

 e_lis %r5, HI(__ram_reloc_dest__)

 e_or2i %r5, LO(__ram_reloc_dest__)

 e_lis %r6, HI(__ram_reloc_end__)

 e_or2i %r6, LO(__ram_reloc_end__)

.relloop:

_NOVLE

 cmpl cr0, %r4, %r6

_VLE

 se_bge .relend

 se_lwz %r7, 0(%r4)

 se_addi %r4, 4

 se_stw %r7, 0(%r5)

 se_addi %r5, 4

 se_b .relloop

.relend:

SPC58xCx/SPC58xG8x system start-up AN5011

22/37 DocID030324 Rev 2

Symbols ‘__process_stack_end’, ‘__sdata2_start__’ and ‘__sdata_start__’ are appropriately
defined into the linker script

For more details on the specification and usage of the Small Data section refer to the Power
Architecture EABI specification (see A.1: 1).

2.2.3 Early Platform initialization

At this stage, the boot and crt code have performed all the basic system initialization. Boot
CPU is ready to continue execution into the C code and continue with HW platform
initialization. Obviously this task must be performed just once, so it is demanded to the Boot
CPU. The reference implementation will provide a call back named ‘__early_init’ that must
be implemented in some way. The reference software implements it into a C file named
‘clock.c’. We will describe in this section the main part of the platform initialization. As done
previously the corresponding code is reported and commented.

2.2.3.1 Disable SWT device (optional step)

Both microcontrollers are equipped with some Software Watchdog Timers. The SWT can be
used to detect software lockup if the peripherals is not properly and timely “feed”. For details
on how to configure the various operations mode please refer to the RM. There is a SWT for
each core. The reset values of the SWT are different for the Boot CPU core’s SWT where it
is enabled by default. In the context of this application note, it could be required to disable
the SWT to avoid any spurious and or unwanted reset. In order to enable the SWT, it needs
to set the WEN (SWT_CR[31]) bit in the control register, that is read-only. In order to make
them writeable, it is needed to write a specific sequence (0xc520, 0xd928) into the SWT
Service Register (SWT_SR), specifically bits WSC[16:31].

An example code that could be used to disable all the SWT might look like:

 /* Stack setup */

 e_lis %r1, HI(__process_stack_end__)

 e_or2i %r1, LO(__process_stack_end__)

 se_li %r0, 0

 e_stwu %r0, -8(%r1)

 /* Small sections registers initialization */

 e_lis %r2, HI(__sdata2_start__)

 e_or2i %r2, LO(__sdata2_start__)

 e_lis %r13, HI(__sdata_start__)

 e_or2i %r13, LO(__sdata_start__)

DocID030324 Rev 2 23/37

AN5011 SPC58xCx/SPC58xG8x system start-up

36

The code will clear bit WEN (SWT_CR[31]) to disable and set bit FRZ (SWT_CR[30]) to
stop the internal counter when the device is entering in debug mode (i.e. when attaching
with a JTAG port). This example is covering the three SWT available on the SPC5EC8x
device. On SPC5NG8x there is another instance that is the SWT_1. Anyway, by default only
the SWT_2 instance on both microcontrollers is the only one that is enabled by default at
reset time.

2.2.3.2 SSCM Error handling configuration

In order to support application debug, it’s a good practice to instruct the device to force an
error (by generating a prefetch or data abort exception) in case of illegal access to off-
platform peripherals. We can have bus abort for access to unused or not-existent peripheral
or peripherals that are not controlled by SSCM (controlled by bit PAE SSCM_ERROR[14]),
or also bus abort for illegal access to reserved addresses within the address space of a valid
peripherals (controlled by bit RAE SSCM_ERROR[15]). Reference code might look like:

2.2.3.3 Reset sources clearing

It’s a good practice to clear all information related to reset sources. The modules involved
are the Reset Generation Module (MC_RGM) and the System Status and Configuration
Module (SSCM). In particular it is needed to clear the RGM Destructive Event Status
Registers (RGM_DES) and the Functional Event Status Register (RGM_FES). Both
registers are cleared by writing ‘1’.

 /* SWTs disabled.*/

 SWT_0.SR.R = 0xC520U;

 SWT_0.SR.R = 0xD928U;

 SWT_0.CR.R = 0xFF000002UL;

 SWT_2.SR.R = 0xC520U;

 SWT_2.SR.R = 0xD928U;

 SWT_2.CR.R = 0xFF000002UL;

 SWT_3.SR.R = 0xC520U;

 SWT_3.SR.R = 0xD928U;

 SWT_3.CR.R = 0xFF000002UL;

/* SSCM_ERROR register bits definitions */

#define SPC5_SSCM_ERROR_RAE (1U << 0)

#define SPC5_SSCM_ERROR_PAE (1U << 1)

/* SSCM.ERROR register initialization */

#define SPC5_SSCM_ERROR_INIT (SPC5_SSCM_ERROR_PAE |
SPC5_SSCM_ERROR_RAE)

/* SSCM initialization from configuration data.*/

 SSCM.ERROR.R = SPC5_SSCM_ERROR_INIT;

SPC58xCx/SPC58xG8x system start-up AN5011

24/37 DocID030324 Rev 2

2.2.3.4 Clocks configuration

The next main step is concerned with the configuration of clock sources, clock tree and
PLLs.

Regarding the clock sources, both devices provide some flexibility in order to choose the
best source according to use case and/or peripherals constraints. Essentially there are five
different sources:

 PLL0 (PLL0_PHI)

 PLL1 (PLL1_PHI)

 External oscillator (XOSC)

 External clock (EXTAL by-pass)

 Internal RC Oscillator (IRCOSC)

Note: For a detailed understanding of the whole clock structure, you should refer to the device RM
(see A.1: 2, 3).

When the device is powered-on, the default configuration enable only the internal RC
oscillator IRCOSC as previously mentioned, and it is the source during the boot-up phase.
Also all various dividers are set to ‘1’ (in HSM module it is configured to provide the max
frequency). This is not clearly a configuration that is able to provide the best clock frequency
to the various peripherals. Hence the boot software has the responsibility to configure the
required clock sources, initialize all the AUX selectors and dividers in order to provide the
needed clock frequencies to the various peripherals and to configure the two PLLs.

2.2.3.4.1 Oscillator by-pass (optional step)

Depending on the board configuration, it is possible to by-pass the XOSC circuit and use an
external crystal connected to the EXTAL pins. This configuration is managed by the MC_ME
module through the XOSC digital interface. The XOSC control register (XOSC_CTL) is
implemented for this purpose: bit OSCBYP (XOSC_CLT[0]) can be set by software only to
by-pass the XOSC. It can be cleared only by a reset. The code above from the reference
software corresponds to the oscillator by-pass. Clearly this is an optional setup.

2.2.3.4.2 Clock tree configuration

Through the Clock Generation Module (MC_CGM) it is possible to fully configure the clock
tree by selecting the needed clock sources and output dividers. The settings are applied by
means of the Auxiliary Clock Selectors, through different sets of registers: DCx (Divider x

 /* RGM errors clearing.*/

 MC_RGM.FES.R = 0xFFFFU;

 MC_RGM.DES.R = 0xFFFFU;

#if (SPC5_OSC_BYPASS == TRUE)

 /* If the board is equipped with an oscillator instead of a crystal then
the

 bypass must be activated.*/

 OSC40M_DIG.CTL.B.OSCBYP = TRUE;

#endif /* SPC5_OSC_BYPASS */

DocID030324 Rev 2 25/37

AN5011 SPC58xCx/SPC58xG8x system start-up

36

Configuration Register), SC (Select Control Register). Refer to the corresponding RM for
the full description of the MC_CGM registers. Providing a full configuration for all clocks is
out of the scope of this document, also because it’s strongly dependent on the final user
application requirements. The example reference code provides some basic configuration.

2.2.3.4.3 Enabling XOSC

The next step requires to enable the alternative clock source that is the XOSC. This
configuration is controlled by the Module Entry block (MC_ME). The corresponding register
is the ME_DRUN_MC (DRUN Mode Configuration) that controls the behavior of the system
when in DRUN execution mode.

It is needed to set bit XOSCON (ME-DRUN_MC[26]) in order to enable the External Crystal
Oscillator. Example reference code is as above:

/* Setting the system dividers to their final values.*/

 MC_CGM.SC_DC0.R = SPC5_CGM_SC_DC0_BITS;

 MC_CGM.SC_DC1.R = SPC5_CGM_SC_DC1_BITS;

 MC_CGM.SC_DC2.R = SPC5_CGM_SC_DC2_BITS;

 MC_CGM.SC_DC3.R = SPC5_CGM_SC_DC3_BITS;

 MC_CGM.SC_DC4.R = SPC5_CGM_SC_DC4_BITS;

 /* Setting the auxiliary dividers to their final values.*/

 MC_CGM.AC0_DC0.R = SPC5_CGM_AC0_DC0_BITS;

 MC_CGM.AC0_DC1.R = SPC5_CGM_AC0_DC1_BITS;

 MC_CGM.AC6_DC0.R = SPC5_CGM_AC6_DC0_BITS;

 MC_CGM.AC9_DC0.R = SPC5_CGM_AC9_DC0_BITS;

 MC_CGM.AC12_DC0.R = SPC5_CGM_AC12_DC0_BITS;

 MC_CGM.AC12_DC1.R = SPC5_CGM_AC12_DC1_BITS;

 MC_CGM.AC12_DC2.R = SPC5_CGM_AC12_DC2_BITS;

 MC_CGM.AC12_DC3.R = SPC5_CGM_AC12_DC3_BITS;

 MC_CGM.AC12_DC4.R = SPC5_CGM_AC12_DC4_BITS;

 /* Setting the clock selectors to their final sources.*/

 MC_CGM.AC0_SC.R = SPC5_CGM_AC0_SC_BITS;

 MC_CGM.AC3_SC.R = SPC5_CGM_AC3_SC_BITS;

 MC_CGM.AC4_SC.R = SPC5_CGM_AC4_SC_BITS;

 MC_CGM.AC6_SC.R = SPC5_CGM_AC6_SC_BITS;

 MC_CGM.AC9_SC.R = SPC5_CGM_AC9_SC_BITS;

 MC_CGM.AC12_SC.R = SPC5_CGM_AC12_SC_BITS;

SPC58xCx/SPC58xG8x system start-up AN5011

26/37 DocID030324 Rev 2

The bit to be set is represented by the macro SPC5_ME_MC_XOSCON. All the others bits
are to preserve the default value (not only the bits are writeable, but access registers is
word-size)

Note: The system is expected to be in DRUN mode at the end of the reset procedure.

2.2.3.4.4 PLL configuration

Last part of a minimal clock configuration concerns the configuration of the two PLLs.
Shortly, the PLL topology is cascade, where PLL0 is provided with two outputs: PHI output is
providing the pll0_clkout signal directly, and PHI1 is instead used as reference clock source
for the PLL1, with just one output (pll1_clkout signal). The configuration of the PLLs is
implemented by a common digital interface PLLDIG that provides come control and status
registers. The register that control the programming id PLLxDV consisting of PHI (and PHI1
for PLL0) output clock reduced frequency dividers, (RFDPHI and RFDPHI1 bits), the Input
Clock Pre-dividers (PREDIV bits) and the Loop Multiplication Factor divider (MFD bits).

Note: PREDIV and MFD must be changed while PLL is in power-down and not locked, while
RFDPHI/RFDPHI1 can be changed while in normal mode, considering that changes will
become effective after a disable/enable cycle.

A basic configuration can be as below code:

/* ME_MC registers bits definitions */

#define SPC5_ME_MC_SYSCLK(n) (((uint32_t)(n)) << 0)

#define SPC5_ME_MC_SYSCLK_IRC SPC5_ME_MC_SYSCLK(0)

#define SPC5_ME_MC_SYSCLK_XOSC SPC5_ME_MC_SYSCLK(1)

#define SPC5_ME_MC_IRCON (1UL << 4)

#define SPC5_ME_MC_XOSCON (1UL << 5)

#define SPC5_ME_MC_FLAON(n) (((uint32_t)(n)) << 16)

#define SPC5_ME_MC_FLAON_NORMAL SPC5_ME_MC_FLAON(3)

#define SPC5_ME_MC_MVRON (1UL << 20)

/* Enables the XOSC in order to check its functionality before proceeding

 with the initialization.*/

 MC_ME.DRUN_MC.R = SPC5_ME_MC_SYSCLK_IRC | SPC5_ME_MC_IRCON |

 SPC5_ME_MC_XOSCON | SPC5_ME_MC_FLAON_NORMAL |

 SPC5_ME_MC_MVRON;

DocID030324 Rev 2 27/37

AN5011 SPC58xCx/SPC58xG8x system start-up

36

2.2.3.5 Chip mode of operation setup

The microcontroller can execute in different modes of operation to give flexibility to the
application to implement different use cases based on different runtime hardware
configuration; thus it is possible to implement application profiles with different characteristic
in terms of power consumption and processing needs.

As soon as the system will exit from the reset, is will always enter in a so called DRUN
mode. There are also other systems modes (RESET, SAFE and TEST) and user mode
(RUN{0,3}, HALT0, STOP0, and STADBY0) that application can switch into to implement
different use cases in terms of power consumption and processing needs. These modes
can be also categorized into an orthogonal classification as “running” mode and “non
running” mode. The Table 6 will help you to understand the classification.

For a detailed description on the chip modes of operation, please refer to the related RM.

The execution modes are controlled by the Module Entry block (MC_ME). The whole
configuration of the system and peripherals is realized through different levels:

1. Define which chip modes are allowed for the micro (by Mode Enable register ME_ME)

2. For each modes, define the overall system configuration in terms of power level, I/O
output, voltage regulator, Flash status, PLLs status, XOSC, IRCOSC and system clock
(by Mode Configuration register, ME_<mode>_MC)

3. For each peripherals, define which RUN and LP (low power) configuration/domain it
belongs to (by Peripheral Control registers ME_PCTLn). There is a PCTLn register

/* PLLs initialization, the changes will have effect on mode switch.*/

 PLLDIG.PLL0CR.R = 0U;

 PLLDIG.PLL0DV.R = SPC5_PLL0_DV_RFDPHI1(SPC5_PLL0_RFDPHI1_VALUE) |

 SPC5_PLL0_DV_RFDPHI(SPC5_PLL0_RFDPHI_VALUE) |

 SPC5_PLL0_DV_PREDIV(SPC5_PLL0_PREDIV_VALUE) |

 SPC5_PLL0_DV_MFD(SPC5_PLL0_MFD_VALUE);

 PLLDIG.PLL1CR.R = 0U;

 PLLDIG.PLL1DV.R = SPC5_PLL1_DV_RFDPHI(SPC5_PLL1_RFDPHI_VALUE) |

 SPC5_PLL1_DV_MFD(SPC5_PLL1_MFD_VALUE);

Table 6. Chip modes of operation

Running Not Running

System

DRUN

TEST

SAFE

RESET

User

RUN0

RUN1

RUN2

RUN3

HALT0

STOP0

STANDBY0

SPC58xCx/SPC58xG8x system start-up AN5011

28/37 DocID030324 Rev 2

associated to each IP/interface and there are up to 8 Peripheral RUN configuration and
Peripheral Low-Power configuration.

4. For each of the 8 RUN configurations, define if the peripheral belonging to the
configuration is active or frozen with the clock gated into the specific-running chip mode
(by Run Peripheral Configuration registers, ME_RUN_PC{0,7})

5. For each of the 8 LP configurations, define if the peripheral belonging to the
configuration is active or frozen with the clock gated into the specific not-running chip
mode (by Low-Power Peripheral Configuration registers, ME_LP_PC{0,7})

Clearly the ME module gives an high flexibility and granularity by mapping the peripherals in
different configurations, at the different chip modes allowing the user application to easily
achieve its functional and power requirements.

The reference code provides a basic implementation that is described here thereafter:

1. All chip modes are allowed

2. Chip mode configurations are:

a) SAFE: hw reset value

b) DRUN: hw reset value plus PPL0, PLL1, XOSC switched ON, PLL1 as system
clock

c) RUN0: same as DRUN

d) RUN1, RUN2, RUN3: hw reset value

e) HALT0: hw reset value

f) STOP0: hw reset value

g) STANDBY0: hw reset value

3. For each peripherals, keep the default grouping (RUN_PC0 and LP_PCO)

4. RUN peripheral configurations

a) RUN_PC0: “Never run” mode, that is peripherals are OFF in all modes

b) RUN_PC1: “Always run” mode, that is peripherals are ON in all modes

c) RUN_PC2: “Normal mode run”, that is peripherals are ON in DRUN and all RUNx
modes

d) RUN_PC3-7: “Application specific”, available to implement custom configuration
(currently as RUN_PC2)

5. LP peripheral configurations

a) LP_PC0: “Never run” mode, that is all peripherals are OFF in all not-run modes

b) LP_PC1: ”Always run”, that is all peripherals are ON in all not-run modes

c) LP_PC2: ”Halt only”, peripherals ON in HALT0 mode only

d) LP_PC3: “Stop only”, peripherals are ON in STOP0 mode only

e) LP_PC4-7: “Application specific”, available to implement customer configuration
(currently peripherals are ON in HALT0 and STOP0 modes)

DocID030324 Rev 2 29/37

AN5011 SPC58xCx/SPC58xG8x system start-up

36

/* Run modes initialization, note writes to the MC registers are verified

 by a protection mechanism, the operation success is verified at the

 end of the sequence.*/

 MC_ME.IS.R = 8U; /* Resetting I_ICONF status.*/

 MC_ME.ME.R = SPC5_ME_ME_BITS;

 MC_ME.SAFE_MC.R = SPC5_ME_SAFE_MC_BITS;

 MC_ME.DRUN_MC.R = SPC5_ME_DRUN_MC_BITS;

 MC_ME.RUN_MC[0].R = SPC5_ME_RUN0_MC_BITS;

 MC_ME.RUN_MC[1].R = SPC5_ME_RUN1_MC_BITS;

 MC_ME.RUN_MC[2].R = SPC5_ME_RUN2_MC_BITS;

 MC_ME.RUN_MC[3].R = SPC5_ME_RUN3_MC_BITS;

 MC_ME.HALT0_MC.R = SPC5_ME_HALT0_MC_BITS;

 MC_ME.STOP0_MC.R = SPC5_ME_STOP0_MC_BITS;

 MC_ME.STANDBY0_MC.R = SPC5_ME_STANDBY0_MC_BITS;

 if ((MC_ME.IS.B.I_ICONF & 1U) == 1U) {/* Configuration rejected.*/

 SPC5_CLOCK_FAILURE_HOOK();}

 /* Peripherals run and low power modes initialization.*/

 MC_ME.RUN_PC[0].R = SPC5_ME_RUN_PC0_BITS;

 MC_ME.RUN_PC[1].R = SPC5_ME_RUN_PC1_BITS;

 MC_ME.RUN_PC[2].R = SPC5_ME_RUN_PC2_BITS;

 MC_ME.RUN_PC[3].R = SPC5_ME_RUN_PC3_BITS;

 MC_ME.RUN_PC[4].R = SPC5_ME_RUN_PC4_BITS;

 MC_ME.RUN_PC[5].R = SPC5_ME_RUN_PC5_BITS;

 MC_ME.RUN_PC[6].R = SPC5_ME_RUN_PC6_BITS;

 MC_ME.RUN_PC[7].R = SPC5_ME_RUN_PC7_BITS;

 MC_ME.LP_PC[0].R = SPC5_ME_LP_PC0_BITS;

 MC_ME.LP_PC[1].R = SPC5_ME_LP_PC1_BITS;

 MC_ME.LP_PC[2].R = SPC5_ME_LP_PC2_BITS;

 MC_ME.LP_PC[3].R = SPC5_ME_LP_PC3_BITS;

 MC_ME.LP_PC[4].R = SPC5_ME_LP_PC4_BITS;

 MC_ME.LP_PC[5].R = SPC5_ME_LP_PC5_BITS;

 MC_ME.LP_PC[6].R = SPC5_ME_LP_PC6_BITS;

 MC_ME.LP_PC[7].R = SPC5_ME_LP_PC7_BITS;

/* Switches again to DRUN mode (current mode) in order to update the settings.*/

 if (SPCSetRunMode(SPC5_RUNMODE_DRUN) == CLOCK_FAILED) {

 SPC5_CLOCK_FAILURE_HOOK();}

SPC58xCx/SPC58xG8x system start-up AN5011

30/37 DocID030324 Rev 2

2.2.4 DATA sections handling

At this stage all the early platform initialization steps have been completed. Just before the
Boot CPU could jump to user application code for executing the application, the “C runtime”
code needs to cope with the DATA sections of the application binary.

2.2.4.1 Clearing BSS sections

The BSS sections need to be zero-ed as required by the C language semantic. A simple
loop for clearing the BSS in memory will look like:

2.2.4.2 Copying initialized DATA section from flash to RAM

The DATA sections containing all the initialized data must be copied from the application
image into the System RAM. The example code will consider a boot configuration where the
application is already loaded in memory by some debug tools, thus not executing from flash.
In that case copying DATA sections is not a needed action. The part of the reference code
where this copy is done is as below:

Late platform initialization and main execution

 /* BSS clearing */

 e_lis %r4, HI(__bss_start__)

 e_or2i %r4, LO(__bss_start__)

 e_lis %r5, HI(__bss_end__)

 e_or2i %r5, LO(__bss_end__)

 se_li %r7, 0

.bssloop:

 cmpl cr0, %r4, %r5

 se_bge .bssend

 se_stw %r7, 0(%r4)

 se_addi %r4, 4

 se_b .bssloop

.bssend:

DocID030324 Rev 2 31/37

AN5011 SPC58xCx/SPC58xG8x system start-up

36

2.2.5 Late platform initialization and main jump

All the basic tasks required to execute any application on the microcontrollers have been
done. The reference code will provide an hook for the end application to execute any
custom tasks for further configuration and/or platform tuning and optimization. The end-user
will require eventually to implement such hook “__late_init”. After that the code will branch to
the ‘main’ C symbol. Eventually an exit handler could be implemented for cleanup purpose
(application provide a fake empty implementation). The corresponding code is as below:

#if !BOOT_LOAD_IN_RAM

 /* DATA initialization */

 e_lis %r4, HI(__romdata_start__)

 e_or2i %r4, LO(__romdata_start__)

 e_lis %r5, HI(__data_start__)

 e_or2i %r5, LO(__data_start__)

 e_lis %r6, HI(__data_end__)

 e_or2i %r6, LO(__data_end__)

.dataloop:

 cmpl cr0, %r5, %r6

 se_bge .dataend

 se_lwz %r7, 0(%r4)

 se_addi %r4, 4

 se_stw %r7, 0(%r5)

 se_addi %r5, 4

 se_b .dataloop

.dataend:

#endif

SPC58xCx/SPC58xG8x system start-up AN5011

32/37 DocID030324 Rev 2

2.3 Multicore system startup

As described in Section 1.3: MCU Cores features the SPC58xCx/SPC58xG8x
microcontrollers are in a multicore configuration; excluding the HSM and the Checker code,
we have two general purpose CPUs into SPC58xCx and three general purpose CPUs into
SPC58xG8x. In Section 2.1: Start-up flow (high-level view) the start-up flow for a single-core
configuration has been described. In this section it will be described the multi-core scenario
with the different possibility that can be implemented.

2.3.1 Multi-core boot (by CPU)

In this case, the actions to boot the secondary cores are taken by the Boot CPU that is the
only one woken-up at the end of the reset procedure. This is the only way to have a multi-
core boot when the BAF code is not executed (SSCM will only dispatch reset vector to Boot
CPU).

Boot CPU will perform usual system initialization (core and platform) then it will wake-up the
other secondary cores, providing dedicated entry point to each core, through the Module
Entry module (MC_ME).

The code running on the secondary cores will perform all the mandatory initialization steps
as executed by main core and will skip the platform setup (it must be done once by the Boot
CPU only). All the secondary cores will then start end executing the user application stuff
that can be completely different by the task executed by the main core. The split of the user

 /*

 * Late initialization.

 */

 e_bl __late_init

 /*

 * Main program invocation.

 */

 e_bl main

 e_b _main_exit_handler

 /*

 * Default main exit code, infinite loop.

 */

 .weak _main_exit_handler

 .globl _main_exit_handler

 .type _main_exit_handler, @function

_main_exit_handler:

 e_b _main_exit_handler

DocID030324 Rev 2 33/37

AN5011 SPC58xCx/SPC58xG8x system start-up

36

tasks across the different CPUs is tightly coupled and dependent by the complete end user
application.

2.3.1.1 Module Entry support for multi-core boot

The MC_ME not only controls chip mode an, its configuration and peripheral run
configuration for the various run and non-run modes, but it is also provided with clock gating
and boot address controls for the secondary cores, through a set of registers:

 Core Control Register N (ME_CCTLn): it controls if the specified core is disabled
(frozen with its clock gated) or running for each chip mode (run and non-run modes).
Note that all cores are always disabled in the non-run modes (STANDBY0, STOP0 and
HALT0); conversely the Boot CPU of the microcontroller (core_2) is by default enabled
and running in all the run modes, both system (DRUN, SAFE, TEST) and user
(RUN0..3).

 Core Address Register N (ME_CADDRn): the lowest bits [0:29] provides the boot
address of the corresponding core at the next exit from a reset, while the bit 31 [RMC,
Reset on Mode Change] determines whether the core should be reset (RMC: 1) or not
(RMC: 0) at the next mode change where the target mode includes the specified core
in the running configuration.

Thus, in order to trigger a software controlled boot of one of the secondary core, the
following steps must be executed:

1. Identify a target mode for the next transition (it could be the same mode as the current
one, i.e. DRUN). Note that the target mode must be allowed in ME_ME register

2. Make sure that the specified CPU is enabled for the target mode (ME_CCTLx)

3. Setup the boot address and enable the RMC bit (ME_CADDRx)

4. Issue a mode transition for the chosen target mode. This is achieved in multiple steps

a) Write key value (0x5AF0) in MC_MCTL[KEY] bits and chip mode value in
MC_MCTL[TARGET_MODE] bits

b) Write it again but using the inverted key value (0xA50F)

c) Check that there are not pending mode transition by inspecting
ME_GS[S_MTRANS] bit

d) Check that the current mode is the expected one by inspecting
ME_GS[S_CURRENT_MODE] bits.

See Table 7 for a summary view of the mapping between the ME_CADDRx/ME_CCTLx
registers and the CPUs available on the SPC58xCx/SPC58xG8x family microcontrollers.

Table 7. ME_CADDRx/ME_CCTLx registers mapping

Register id X SPC58ECx SPC5NG8x

1 Core_2 Core_2

2 Core_0 Core_0

3 — Core_1

4 HSM HSM

SPC58xCx/SPC58xG8x system start-up AN5011

34/37 DocID030324 Rev 2

2.3.2 Multi-core boot (by BAF)

In case of the BAF code is executed by the Boot CPU stimulated by the SSCM, depending
on the configuration written into the Boot header, more than one CPUs can be woken-up all
together at the end of the BAF code execution and start executing user code at the different
vector addresses provided into the header. See Table 4 for the description of the Boot
Record searched by the BAF code.

The work split is exactly the same as in the first case: Boot CPU will usually perform core
and platform initialization, while the secondary cores will execute only core specific
initialization. Then all the cores will start executing the end user application. Some
synchronization will need to be implemented in user application to ensure that the system is
in the proper state before executing its duties (this strongly depend on the tasks that are
performed by the CPU).

DocID030324 Rev 2 35/37

AN5011 Further Information

36

Appendix A Further Information

A.1 Reference documents

1. e200z4 Power Architecture® Core Reference Manuals

2. SPC584Cx/SPC58EC8x 32-bit MCU family built on the Power Architecture® for
automotive body electronics applications (RM0407, Doc ID 028117)

3. SPC58NE84x/SPC58xG84x 32-bit Power Architecture® microcontroller for automotive
ASILD applications (RM0391, Doc ID 027214)

A.2 Acronyms and abbreviations

Table 8. Acronyms and abbreviations

Acronyms Meaning

BAM Boot Assist Module

BAF Boot Assist Flash

BTB Branch Target Buffer

CPU Central Processing Unit

DCache Data Cache

DCF Device Configuration Format

DMEM Data Memory (internal to the core)

HSM Hardware Security Module

ECC Error Correcting Code

GHS Green Hills (Compiler)

ICache Instruction Cache

IMEM Instruction Memory (internal to the core)

LSM Lock Step Mode

MC_CGM Clock Generation Module

MC_ME Mode Entry Module

RGM Reset Generation Module

MPU Memory Protection Unit

PMC Power Management Controller

PLL Phase Locked Loop

Revision history AN5011

36/37 DocID030324 Rev 2

Revision history

Table 9. Document revision history

Date Revision Changes

24-Feb-2017 1 Initial release.

04-Sep-2017 2

In Section 2.2.1.2: Clearing of all core registers,
added paragraph “It's also useful to cleanup CPU
register...” and relative code.

In Section 2.2.1.6: Caches initialization, updated
“se_andi” with “e_and2i.” code.

Removed “ST Restricted” watermark.

DocID030324 Rev 2 37/37

AN5011

37

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

	1 Architecture overview
	1.1 SPC58xCx architecture overview
	1.2 SPC58xG8x architecture overview
	1.3 MCU Cores features
	1.4 Reset and boot

	2 SPC58xCx/SPC58xG8x system start-up
	2.1 Start-up flow (high-level view)
	2.2 Start-up code explained
	2.2.1 System initialization
	2.2.1.1 Set PIR register
	2.2.1.2 Clearing of all core registers
	2.2.1.3 Clearing of System SRAM
	2.2.1.4 Clearing of core D-MEM (and I-MEM for SPC58xG8x)
	2.2.1.5 Branch Target Buffer initialization
	2.2.1.6 Caches initialization
	2.2.1.7 Exception vector initialization (IVPR and MSR)
	2.2.1.8 Relocating image from flash into RAM (optional)

	2.2.2 EABI “C runtime” initialization
	2.2.3 Early Platform initialization
	2.2.3.1 Disable SWT device (optional step)
	2.2.3.2 SSCM Error handling configuration
	2.2.3.3 Reset sources clearing
	2.2.3.4 Clocks configuration
	2.2.3.5 Chip mode of operation setup

	2.2.4 DATA sections handling
	2.2.4.1 Clearing BSS sections
	2.2.4.2 Copying initialized DATA section from flash to RAM

	2.2.5 Late platform initialization and main jump

	2.3 Multicore system startup
	2.3.1 Multi-core boot (by CPU)
	2.3.1.1 Module Entry support for multi-core boot

	2.3.2 Multi-core boot (by BAF)

	Appendix A Further Information
	A.1 Reference documents
	A.2 Acronyms and abbreviations

	Revision history

