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Application note

SPC58xCx/SPC58xG8x Getting Started
 

Introduction

This Application Note is aimed to describe the basic steps of the device boot flow of the 
SPC58xCx and SPC58xG8x devices, in order to support mostly software developers and 
application programmers in the design of applications to implement all the needed steps for 
using the microcontroller. It tries to be as much as possible independent from any adopted 
toolchain, thus without relying upon any runtime libraries for the start-up phase.

The boot flow here considered starts from the power-on and ends when the MCU has 
started execution of the user application. Considering the scope and goals of this document, 
the most important blocks of the MCU are the CPUs and the IPs involved on the reset 
process, that are shortly described later on. Further a brief description of the reset process 
is given.

To help with the understanding of the boot flow and the corresponding device configuration, 
some assembly and C code is included and commented purely as reference. It is based on 
a simple bare code distributed with the ST SPC5-STUDIO free tool available from ST 
website.

Despite SPC58xCx and SPC58xG8x are targeting different automotive application domains, 
and have some differences in terms of types/configurations and/or instances of peripheral 
IPs, different flash and system memory sizes, or targeting different safety levels (ASIL-B vs 
ASIL-D), or different packaging solutions, as far as the system start-up flow is concerned, 
they have many things in common so that can be described in an unique document. In case 
of specific settings are required depending on device characteristic then they are specifically 
highlighted.

Limitations

The initialization flow described in this application note doesn’t include any safety/security 
topics as well as any special memory handling like internal memory remapping or memory 
protection levels. 

It is intended that this application note is read along with the SPC58xCx/SPC58xG8x 
Reference Manuals, that can be obtained from the STMicroelectronics website at 
http://www.st.com (see A.1: 2, 3).

www.st.com

http://www.st.com
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1 Architecture overview

In this chapter it is described a short overview of the two devices firstly. Then some more 
detailed information on the core configuration is provided as they are key for the goal of this 
application note.

1.1 SPC58xCx architecture overview

The SPC58xCx device is a 32-bit Power Architecture microcontroller for automotive 
ASIL-B applications, targeting vehicle body and gateway such as:

 Central body controller

 Smart junction box

 Mid and high end gateway

The device in the full featured configuration is equipped with two symmetrical e200z420 
CPUs @180 MHz (named core_0 and core_2), featured with Local D-RAM (D-MEM), 
Instruction (I-Cache) and Data Cache (D-Cache) to increase system performance. It also 
includes enhancements aimed to fulfil safety requirement (e2e ECC, core MPU).

It also includes one e200z0 CPU @100 MHz into the Hardware Security Module (HSM).

Apart of the processor local memory and caches, the platform is equipped with on-chip flash 
memory (and related flash controller) and on-chip general –purpose System SRAM.

Both CPUs are connected to the external memories and I/O peripheral devices through a 
64-bit Cross Bar Switch (XBAR). For a detailed description of all the devices and interfaces 
and all the other features implemented by the platform refer to the SPC58xCx Reference 
Manual (see A.1: 1, 2).

The top-level block diagram below gives an overview of the microcontroller architecture.
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Figure 1. SPC58ECx Block diagram

1.2 SPC58xG8x architecture overview

The SPC58xG8x device is a 32-bit Power Architecture microcontroller for automotive ASIL-
D applications, targeting body automotive domain, more specifically:

 Integrated chassis control, high-end steering and braking

 High-end central body controller, smart junction boxes, stand-alone and integrated 
gateway

 In general any safety critical application requiring a very high level of safety integrity
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Differently from the SPC58xCx device, the SPC58xG8x in the full featured configuration is 
equipped with six PowerPC CPUs (some in Delayed Lock-Step mode) distributed across 
two different computing shells and the HSM as below:

 Computing Shell 0

– 2 x e200z420 @180 MHz (namely core_0 and core_1)

– 1 x e200z419 @180 MHz (named core_0 checker) paired to core_0 in delayed 
lock-step mode

 Computing Shell 1

– 1 x e200z425 @180 MHz (named core_2) with enhancements for DSP algorithms

– 1 x e200z425 @180 MHz (named core_2 checker) paired to core_2 in delayed 
lock-step mode

 Hardware Security Module (HSM)

– 1 x e200z0 @90 MHz

Differently from the cores available into the SPC58xCx device, the configuration of the six 
cores on SPC58xG8x MCU differs in terms of local memory and cache configuration.

This has some impacts on the configuration to be implemented by the software boot code as 
it is highlighted later.

Both Computing Shell 0 and 1 are connected to all the peripherals through two identical 
Fast Cross Bar Switches, 64-bit wide @180MHz, named respectively XBAR_0 and 
XBAR_1. A detailed description of the whole MCU architecture is out of the scope of such 
application note; for a fully comprehensive view refer to the related Reference Manual (see 
A.1: 2, 3).

The top-level block diagram below gives an overview of the microcontroller architecture.
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Figure 2. SPC58NG8x Block diagram

1.3 MCU Cores features

All CPUs are compatible with the Power Architecture VLE instruction set which supports 
some code size reduction. The Power Architecture has enhancements that improve the 
architecture’s fit in embedded applications.

From a software perspective, every bus master device (CPUs, DMA, SIPI, Ethernet, 
FlexRay) sees each memory (RAM modules, Flash) and peripherals in a consistent, flat 
memory map.

As reported in previous sections, the cores available in the computing shells on both MCUs 
are not perfectly identical. They have some slightly different configurations that have 
impacts on the configuration to be implemented into the software start-up code, that is the 
main focus of this application note, so it is worth to highlight what the differences are in 
terms on CPU local memory (D-MEM and/or I-MEM) and CPU cache (D-Cache and/or I-
Cache). In the tables below it is possible to have an overall view of the main differences 
across all the CPU instances.
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As it can be seen from the Table 2, on SPC58xG8x device the boot code running on core_0 
and core_1 needs to take into account the presence of the D-Cache that is not available on 
the core_2. And also in order to re-use the same start-up software to boot-up core_0 and 
core_2 on the SPC58xCx micro, it needs to take into account that the I-MEM is not present 
(see Table 1). This different memory configuration has impacts on the software memory 
map as the start-up code cannot be loaded into the I-MEM to gain better performance.

1.4 Reset and boot

The power-up reset sequence always begins with the application of the power and follows 
different sequences depending on the condition of the SPC58xCx/SPC58xG8x family 
devices and various chip modes enabled from settings in the DCF records.

There are several modules used to step through the sequence needed to properly reset the 
SPC58xCx/SPC58xG8x and prepare it to fetch the first instruction of the user application 
code. These are briefly described here thereafter:

 Power Management Controller (PCM): it controls and monitors various voltage levels 
around the chip

 Reset Generation Module (RGM): it’s a state machine, not executing program code. It 
centralizes the various reset sources and manages the reset sequence.

 System Status and Configuration Module (SSCM): it’s a state machine as well. It’s in 
charge to deliver the initial device configuration. It has a role in the boot-up process as 
responsible to locate the boot vector from flash device (for boot core and eventually for 
the HSM secure core)

 Mode Entry Module (MC_ME): it configures device execution mode and delivers reset 
vectors to all cores. It has an important role in the multi-core boot-up configuration.

 Self-Test Control Unit (STCU2): it runs the Logic Built-in Self-Test (LBIST) and Memory 
Built-in Self-Test (MBIST) for safety needs.

The reset procedure is a complex flow that involves all module above and each of them 
evolves through the respective finite machine states. Each module depending on the stage 
of the reset could provide different trigger signals to the other module, so that starting from 

Table 1. SPC58ECx core memory configuration

Core instance Core type D-MEM I-MEM D-Cache I-Cache

core_0, core_2 e200z420n3 64 KB None 4 KB 8 KB

HSM core e200z0 None None None none

Table 2. SPC58NG8x core memory configuration

Core instance Core type D-MEM I-MEM D-Cache I-Cache

core_0, core_1 e200z420n3 64 KB 16 KB 4 KB 8 KB

core_2 e200z425n3 32 KB 16 KB None 8 KB

Checker core_0 e200z419 None None None None

Checker core_2 e200z425n3 32 KB 16 KB None 8 KB

HSM core e200z0 None None None None
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the power-on, the MCU will reach into the IDLE[FUNC] state where finally the MCU is able 
to executing code.

For a more detailed description of the reset flow refer to the chapter 8 of the Reference 
Manual (see A.1: 2, 3).

In fact at the end of the reset sequence, there is always only one core (named Boot CPU) 
that is automatically woken-up (optionally the secure HSM core is started as well, 
depending on the hardware configuration). On Chorus devices the role of Boot CPU is 
played by Core_2. It then performs all the needed system initialization tasks and once done 
it is ready to execute user application.

In the next section the system boot-up code will be described assuming a single core boot 
configuration. Refer to the dedicated section for the multicore use case.

The Core_2 reset vector, read by the SSCM from the DCF and then transferred to the core 
by mean of the MC_ME module, will always point to a location into the Boot Assist Flash. 
Depending on the system configuration stored into the DCF BAF record into the flash, the 
Boot CPU will either execute the BAF code (located in a specific location into a flash block) 
or will start executing the user application code directly. In the latter case, the application 
boot address is specified into the so called SSCM boot header, whose structure is described 
below:

          

In case of boot w/o BAF support, the only CPU that is able to execute the application code is 
the Boot CPU. Application code will be in charge to execute all the steps required to wake 
up the other secondary cores in case of a multicore application. This will be described later.

If the BAF code is instead executed, the boot address is retrieved by the software in a 
similar way done by the SSCM. For detail on the lookup algorithm refer to the corresponding 
Reference Manual (see A.1: 2, 3). 

Table 3. Boot record structure searched by the SSCM

Offset Field description

0x4 Application start address

0x0 SSCM Boot Record Tag (A5h) Reserved
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Figure 3. Boot CPU start-up sequence

The BAF Boor header has a slightly different structure compared to the SSMC boot record 
as shown in Figure 3. In this case it is possible to have a more flexible boot configuration. It 
is possible to specify which CPU will be woken-up by writing the CPU enable flags 
accordingly and define different boot address for the different CPUs.

The BAF Boot Record structure is defined below.

          

Table 4. Boot record structure searched by the BAF 

Offset Field description

0xC CPU_1 Reset vector

0x8 CPU_0 Reset vector

Restart 
from

Stand-by ?

BAF_BYPASS 
selection

NO

0

Boot from 
ME.CADDRBootCpu

YES

Found ?

1

CPU stopped waiting for 
watchdog timeout or reset

NOYES

Jump to
Application code

Reset

SSCM

Found
BAF 

Configuration
DCF ?

YES

NO

Default = BAF

Search valid
Boot header

BAF
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0x4 Boot CPU (CPU_2) Reset vector

0x0 BAF Boot Record Tag (A5h) CPU enable flags (see Table 5)

Table 5. CPU enable flags

16-19 20-23 24-27 28 29 30 31

0000 0000 0000 0 CPU_1 CPU_0 CPU_2

Table 4. Boot record structure searched by the BAF (continued)

Offset Field description



DocID030324 Rev 2 13/37

AN5011 SPC58xCx/SPC58xG8x system start-up

36

2 SPC58xCx/SPC58xG8x system start-up

In this section it will be described all the basic and most important initializations that are 
required to setup the microcontrollers for executing end-user application. In order to focus 
only on the platform initialization, in this section it will be considered the single core boot 
scenario only.

As previously mentioned, the CPU reset vectors are retrieved by hardware (via SSCM) or by 
software (via BAF code) by inspecting the BAF record. So the code image burned into the 
flash partition needs to provide a proper boot record as described below:

SPC58xG8x Boot record

          

          

SPC58xCx Boot record

          

In the single-core boot use case, the code will look like the code above. The reset address 
for the other cores is assumed to be available but actually the tag is for one core only.

By providing the proper tag with all the CPU enable flags set, the BAF code will be able to 
wake-up all the CPUs and manage the delivery of the start-up address.

The start-up flow is described here thereafter at high level. Then a detailed explanation is 
provided for each steps. Further in order to clarify better all the steps needed to initialize and 
configure the device, a reference code is also attached implementing the start-up process.

.section .boot, "axv"

.long    0x00A50001   /* Only Core 2 will run

                         0x00A50007: Core 0,1 woken-up too

                         0x00A50005: Core 1 woken-up too

                         0x00A50003: Core 0 woken-up too

                      */

.long    _reset_address2    /* Core 2 reset address. */

.long    _reset_address0    /* Core 0 reset address. */

.long    _reset_address1    /* Core 1 reset address. */

.section  .boot, "axv"

.long     0x00A50001   /* Only Core 2 will run

                          0x00A50003: Core 0 woken-up too

                        */

.long     _reset_address2   /* Core 2 reset address. */

.long     _reset_address0   /* Core 0 reset address. */
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2.1 Start-up flow (high-level view)

The start-up code is split into five main parts

 System initialization: it concerns all the initialization strictly related to the core itself 
(local memories, caches, exception, … ) and system memory. These are the first 
instructions executed by the CPU once it has been enabled and the reset vector has 
been delivered to it. It is implemented in assembly code, into the boot.s file.

 EABI “C runtime” initialization: in order to allow a proper execution of application 
code in C language compiled with EABI compliant toolchain, some core registers must 
be properly initialized. This is done into the C runtime support assembly file crt.s that is 
the trampoline to the application entry point.

 Early platform initialization: this part concerns with the initialization of the 
microcontroller platform, covering mostly clocks, power mode, cross-bar, flash 
controller in order to guarantee that the microcontroller is properly configured. The 
initialization of all other needed peripherals is out of the scope of this application note 
and not part anyway of the start-up phase. The early initialization in our reference code 
is implemented in C source into the file clock.c

 DATA section handling: Once the basic initialization is done, last few things are 
needed before user application can be run. BSS ELF section must be cleared and 
initialized DATA sections must be copied from the flash device to the System SRAM. 
This is done again in assembly code into the crt.s trampoline. Code is structured to 
provide an hook to user application for implementing eventually and optionally any late 
initialization. After that the core will jump to the standard ‘main’ C function.

 Late platform initialization: This an optional step provided by the software 
infrastructure to perform any option system initialization, optimization and platform 
customization that could be aimed to support the specific end user application. 
Reference code distributed with this AN will just provide an empty implementation. 

Below a more detailed description of the tasks executed into each of the five parts. In the 
next section it will be provided a more detailed view and the corresponding code extracted 
from the reference example.

 System initialization

– Set PIR register

– Clearing of all core registers

– Clearing of System SRAM

– Clearing of core D-MEM (and I-MEM for SPC58xG8x)

– Branch Target Buffer initialization

– Caches initialization

– Exception vector initialization (IVPR and MSR)

– Relocating image from FLASH into RAM (optional)

– Setup of platform initialization code address

 EABI “C runtime” setup

– Setup process stack

– Initialize SDATA and SDATA2 registers

 Early Platform initialization

– Disable SWT device (optional step)

– SSCM Error handling configuration
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– Reset sources clearing

– Clock configuration

Oscillator by-pass (optional step)

Clock tree initialization

Enabling XOSC

PLL configuration

– Chip mode of operations setup

 DATA section handling

– Clearing BSS sections

– Copying initialized DATA section from flash to RAM

 Late platform initialization

2.2 Start-up code explained

2.2.1 System initialization

2.2.1.1 Set PIR register

PIR (Processor ID Register) is the Special Purpose Register (SPR) 286. It needs to hold the 
CPU number identifier. It can be done by the following code:

          

2.2.1.2 Clearing of all core registers

The reset values of the General Purpose Registers (GPRs) are undefined. In order to 
guarantee a clean startup of the application, it’s a good practice to clear all the registers 
before any use. Later, according to the application EABI, some registers needs to be 
initialized at some specific values. Clearing GPRs is a key step for the checker cores that 
are in lock-step mode. As they will replicate the operations performed by the replicated core, 
it’s mandatory that the registers are set in a clear condition.

The assembly code for clearing GPRs, might look like this:

          

e_li    %r0, n         /* n {0,1,2} is the CPU number */

mtspr   286, %r0       /* PIR register.*/

/* Clears the internal registers of the calling core. */

_regclear:

        xor         %r0, %r0, %r0

        xor         %r1, %r1, %r1

/* [SNIP] Repeat for r2 to r29*/

        xor         %r30, %r30, %r30

        xor         %r31, %r31, %r31



SPC58xCx/SPC58xG8x system start-up AN5011

16/37 DocID030324 Rev 2

It's also useful to cleanup CPU registers that might be stacked. This is necessary also 
playing with lockstep core(s), when available.

          

2.2.1.3 Clearing of System SRAM

As the System SRAM is coupled with an ECC engine, before any access to memory 
locations, start-up cope must guarantee that the memory locations are cleared to avoid 
generating parity check errors due to garbage values. The assembly code implementing this 
step might look like:

mtspr 1,r1

mtcrf 0xFF,r1

mtspr CTR,r1

mtspr SPRG0,r1

mtspr SPRG1,r1

mtspr SPRG2,r1

mtspr SPRG3,r1

mtspr SRR0,r1

mtspr SRR1,r1

mtspr CSRR0,r1

mtspr CSRR1,r1

mtspr MCSRR0,r1

mtspr MCSRR1,r1

mtspr DEAR,r1

mtspr USPRG0,r1

mtspr 62,r1
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The code consists into a tight loop, where the memory content is cleared at block of 64 
bytes, writing the content of (zero-ed) GPRs r16 to r31 using the multiple work store 
instruction. It clearly assumes that registers (r16 – r3) have been previously cleared as well.

The start and end SRAM addresses are represented by the linker variables ‘__ram_start’ 
and ‘__ram_end’ whose values are defined into the application linker script.

2.2.1.4 Clearing of core D-MEM (and I-MEM for SPC58xG8x)

Similarly to System SRAM, the local core memory (including D-MEM and I-MEM where 
applicable) needs to be cleared before attempting any access to its location. The start-up 
code will perform this step in a similar way to the SRAM, with the following piece of 
assembly code:

/* System RAM clearing */

        .align      2

_sysraminit:

        /* Shared RAM.*/

        e_lis       %r4, HI(__ram_start__)

        e_or2i      %r4, LO(__ram_start__)

        e_lis       %r5, HI(__ram_end__)

        e_or2i      %r5, LO(__ram_end__)

.sramclrloop:

_NOVLE

        cmpl        cr0, %r4, %r5

_VLE

        se_bge      .sramclrend

        e_stmw      %r16, 0(%r4)

        e_addi      %r4, %r4, 64

        se_b        .sramclrloop

.sramclrend:
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Code implementation is pretty similar. The extracted code is applicable to any of the cores. 
The example is referring to the core_2 case, as it can be retrieved from the name of the 
linker variables defining the memory boundaries (‘__dram2_start’ and ‘__dram2_end’). 
Those symbols are defined by the corresponding linker script. A counterpart for Core_0 
(and Core_1 in case of SPC58xG8x) must be implemented.

2.2.1.5 Branch Target Buffer initialization

All e200z420n3, e200z419, and e200z425n3 processor cores features a Branch Processing 
Unit used to predict and prefetch branch target address. In order to use it, start-up code 
must flush, invalidate, configure and enable it by the BTB control register; more specifically 
by writing into the BUCSR (Branch Unit Control and Status Register (SPR 1013). It’s 
possible to accomplish all the initialization by a single write into the register. Example code 
might look like:

          

          

/* Core 2 RAM clearing */

        .align      2

_ram2init:

        /* Core 2 DRAM.*/

        e_lis       %r4, HI(__dram2_start__)

        e_or2i      %r4, LO(__dram2_start__)

        e_lis       %r5, HI(__dram2_end__)

        e_or2i      %r5, LO(__dram2_end__)

.dram2clrloop:

_NOVLE

        cmpl        cr0, %r4, %r5

_VLE

        se_bge      .dram2clrend

        e_stmw      %r16, 0(%r4)

        e_addi      %r4, %r4, 64

        se_b        .dram2clrloop

.dram2clrend:

/* BUCSR registers definitions */

#define BUCSR_BPEN              0x00000001

#define BUCSR_BALLOC_BBFI       0x00000200

/* BUCSR default settings */

#define BUCSR_DEFAULT           (BUCSR_BPEN | BUCSR_BALLOC_BBFI)

e_li        %r3, BUCSR_DEFAULT

mtspr       1013, %r3 /* BUCSR */
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BPEN (BUCSR[31]) bit if set will enable BTB to predict branches.

BALLOC_BFI mask is used to set BBFI (BUCSR[22]) bit to Flush & Invalidate the BTB. It is 
also used to clear the BALLOC (BUCSR[26:27]) bits to allocate BTB for all branches 
(backward and forward).

2.2.1.6 Caches initialization

All main cores are equipped with 8 KB of instruction cache. So in order to speed-up program 
execution it’s possible to use it since the early stage of the boot process. I-Cache must be 
invalidated firstly and then enabled. L1 I-Cache is controlled by L1CSR1 register (L1 Cache 
Control and Status Register 1), that is SPR 1011. ICE (L1CSR1[31]) bit if set will enable I-
Cache. ICINV (L1CSR1[30]) bit if set to 1 will initiate an invalidation process in hardware. 
When the operation is completed the ICINV bit is reset to 0. It’s also needed to enable the 
ECC capability by setting bit ICECE (L1CSR1[15]). Code will look like this. 

          

2.2.1.7 Exception vector initialization (IVPR and MSR)

Another mandatory step in the start-up process is the initialization of the Interrupt Vector 
Prefix Register (IVPR) that is used to compute the starting address of the software interrupt 
handler, together with the IVORx (Interrupt Vector Offset Register) register.

The symbol ‘__ivpr2_base__” is defined into the linker script. Similarly, the same 
initialization is done for all the other cores.

#define L1CSR1_ICE              0x00000001

#define L1CSR1_ICINV            0x00000002

#define L1CSR1_ICECE            0x00020000

#define L1CSR1_DEFAULT          (L1CSR1_ICE | L1CSR1_ICECE)

        /* Cache initialization */

_cacheinit:

        /* ICache invalidated and then enabled.*/

        e_li        %r3, L1CSR1_ICINV

        mtspr       1011, %r3       /* L1CSR1 */

.iclrwait:

        mfspr       %r3, 1011       /* L1CSR1 */

        e_and2i.    %r3, L1CSR1_ICINV

        se_bne      .iclrwait       /* Wait for ICINV bit to be cleared */

        e_lis       %r3, HI(L1CSR1_DEFAULT)

        e_or2i      %r3, LO(L1CSR1_DEFAULT)

        mtspr       1011, %r3       /* L1CSR1 */
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Another initialization is related to the Machine State Register (MSR). A suggested default 
initialization comprises the following features:

 Bit SPE (MSR[6]): if set, the SPE APU vector instructions execution is enabled

 Bit WE (MSR[13]): if set, Wait State (power management) is enabled

 Bit CE (MSR[14]): if set, Critical Interrupts and Watchdog timers interrupts are enabled

 Bit ME (MSR[19]): if set, Asynchronous Machine Check interrupts are enabled

The code to implement this initialization might look like this:

          

The code above refers to the core_2. Similarly the same initialization can be done for all the 
other CPUs, referring to the corresponding base address for the Interrupt Vector, defined 
into the application linker script as well.

2.2.1.8 Relocating image from flash into RAM (optional)

Optionally, the application image stored into the read-only flash partition could be relocated 
into the R/W System SRAM to speed-up later access to code and data. So, with the 
exception of the .boot0 section, the whole flash image can be copied from flash to RAM. A 
properly configured linker script, will define some variable to identify the start, end and size 
of the image. This procedure could slightly slow down the boot step, but it will guarantee that 
the whole application data and code will later stay in RAM and benefit from increased R/W 
accesses. Also, in a late initialization, the D-Cache could be used also to give better 
performances.

The code in charge of doing this relocation, will look like:

/* MSR register definitions */

#define MSR_SPE                 0x02000000

#define MSR_WE                  0x00040000

#define MSR_CE                  0x00020000

#define MSR_ME                  0x00001000

#define MSR_DEFAULT             (MSR_SPE | MSR_WE | MSR_CE | MSR_ME)

        /* Core 2 exception vectors initialization */

        .align      2

_iv2init:

        /* IVPR initialization.*/

        e_lis       %r3, HI(__ivpr2_base__)

        e_or2i      %r3, LO(__ivpr2_base__)

        mtIVPR      %r3

        /* MSR initialization.*/

        e_lis       %r3, HI(MSR_DEFAULT)

        e_or2i      %r3, LO(MSR_DEFAULT)

        mtMSR       %r3
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Note: This optional step is clearly executed only by the Boot CPU (Core_2).

This is the last step of the system initialization. Booting CPU will continue execution to 
perfom the next necessary steps for the C runtime setup, as said implemented in the crt0.s 
assembly file.

2.2.2 EABI “C runtime” initialization

According to Power Architecture EABI specification, to allow EABI compliant compilers to 
generate user application code that can work properly, some general purpose registers that 
play a special role during application execution must be initialized before starting execution 
of C code. These are the “special” usage registers:

 GPR1: Stack Frame pointer, set to the base of the stack

 GPR2: Small Data 2 pointer, set to the base of the ELF section .sdata2 plus 32 KB 
displacement

 GPR13: Small Data pointer, set to the base of the ELF section .sdata plus 32 KB 
displacement

First instruction of the crt0.s assembly file will do exactly this initialization. Code will look like 
the following one:

/* Image relocation in RAM */

        e_lis       %r4, HI(__ram_reloc_start__)

        e_or2i      %r4, LO(__ram_reloc_start__)

        e_lis       %r5, HI(__ram_reloc_dest__)

        e_or2i      %r5, LO(__ram_reloc_dest__)

        e_lis       %r6, HI(__ram_reloc_end__)

        e_or2i      %r6, LO(__ram_reloc_end__)

.relloop:

_NOVLE

        cmpl        cr0, %r4, %r6

_VLE

        se_bge      .relend

        se_lwz      %r7, 0(%r4)

        se_addi     %r4, 4

        se_stw      %r7, 0(%r5)

        se_addi     %r5, 4

        se_b        .relloop

.relend:
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Symbols ‘__process_stack_end’, ‘__sdata2_start__’ and ‘__sdata_start__’ are appropriately 
defined into the linker script

For more details on the specification and usage of the Small Data section refer to the Power 
Architecture EABI specification (see A.1: 1).

2.2.3 Early Platform initialization

At this stage, the boot and crt code have performed all the basic system initialization. Boot 
CPU is ready to continue execution into the C code and continue with HW platform 
initialization. Obviously this task must be performed just once, so it is demanded to the Boot 
CPU. The reference implementation will provide a call back named ‘__early_init’ that must 
be implemented in some way. The reference software implements it into a C file named 
‘clock.c’. We will describe in this section the main part of the platform initialization. As done 
previously the corresponding code is reported and commented.

2.2.3.1 Disable SWT device (optional step)

Both microcontrollers are equipped with some Software Watchdog Timers. The SWT can be 
used to detect software lockup if the peripherals is not properly and timely “feed”. For details 
on how to configure the various operations mode please refer to the RM. There is a SWT for 
each core. The reset values of the SWT are different for the Boot CPU core’s SWT where it 
is enabled by default. In the context of this application note, it could be required to disable 
the SWT to avoid any spurious and or unwanted reset. In order to enable the SWT, it needs 
to set the WEN (SWT_CR[31]) bit in the control register, that is read-only. In order to make 
them writeable, it is needed to write a specific sequence (0xc520, 0xd928) into the SWT 
Service Register (SWT_SR), specifically bits WSC[16:31].

An example code that could be used to disable all the SWT might look like:

        /* Stack setup */

        e_lis       %r1, HI(__process_stack_end__)

        e_or2i      %r1, LO(__process_stack_end__)

        se_li       %r0, 0

        e_stwu      %r0, -8(%r1)

        /* Small sections registers initialization */

        e_lis       %r2,  HI(__sdata2_start__)

        e_or2i      %r2,  LO(__sdata2_start__)

        e_lis       %r13, HI(__sdata_start__)

        e_or2i      %r13, LO(__sdata_start__)
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The code will clear bit WEN (SWT_CR[31]) to disable and set bit FRZ (SWT_CR[30]) to 
stop the internal counter when the device is entering in debug mode (i.e. when attaching 
with a JTAG port). This example is covering the three SWT available on the SPC5EC8x 
device. On SPC5NG8x there is another instance that is the SWT_1. Anyway, by default only 
the SWT_2 instance on both microcontrollers is the only one that is enabled by default at 
reset time.

2.2.3.2 SSCM Error handling configuration

In order to support application debug, it’s a good practice to instruct the device to force an 
error (by generating a prefetch or data abort exception) in case of illegal access to off-
platform peripherals. We can have bus abort for access to unused or not-existent peripheral 
or peripherals that are not controlled by SSCM (controlled by bit PAE SSCM_ERROR[14]), 
or also bus abort for illegal access to reserved addresses within the address space of a valid 
peripherals (controlled by bit RAE SSCM_ERROR[15]). Reference code might look like:

          

2.2.3.3 Reset sources clearing

It’s a good practice to clear all information related to reset sources. The modules involved 
are the Reset Generation Module (MC_RGM) and the System Status and Configuration 
Module (SSCM). In particular it is needed to clear the RGM Destructive Event Status 
Registers (RGM_DES) and the Functional Event Status Register (RGM_FES). Both 
registers are cleared by writing ‘1’.

  /* SWTs disabled.*/

  SWT_0.SR.R          = 0xC520U;

  SWT_0.SR.R          = 0xD928U;

  SWT_0.CR.R          = 0xFF000002UL;

  SWT_2.SR.R          = 0xC520U;

  SWT_2.SR.R          = 0xD928U;

  SWT_2.CR.R          = 0xFF000002UL;

  SWT_3.SR.R          = 0xC520U;

  SWT_3.SR.R          = 0xD928U;

  SWT_3.CR.R          = 0xFF000002UL;

/* SSCM_ERROR register bits definitions */

#define SPC5_SSCM_ERROR_RAE         (1U << 0)

#define SPC5_SSCM_ERROR_PAE         (1U << 1)

/* SSCM.ERROR register initialization */

#define SPC5_SSCM_ERROR_INIT   (SPC5_SSCM_ERROR_PAE | 
SPC5_SSCM_ERROR_RAE)

/* SSCM initialization from configuration data.*/

  SSCM.ERROR.R        = SPC5_SSCM_ERROR_INIT;
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2.2.3.4 Clocks configuration

The next main step is concerned with the configuration of clock sources, clock tree and 
PLLs. 

Regarding the clock sources, both devices provide some flexibility in order to choose the 
best source according to use case and/or peripherals constraints. Essentially there are five 
different sources:

 PLL0 (PLL0_PHI)

 PLL1 (PLL1_PHI)

 External oscillator (XOSC)

 External clock (EXTAL by-pass)

 Internal RC Oscillator (IRCOSC)

Note: For a detailed understanding of the whole clock structure, you should refer to the device RM 
(see A.1: 2, 3).

When the device is powered-on, the default configuration enable only the internal RC 
oscillator IRCOSC as previously mentioned, and it is the source during the boot-up phase. 
Also all various dividers are set to ‘1’ (in HSM module it is configured to provide the max 
frequency). This is not clearly a configuration that is able to provide the best clock frequency 
to the various peripherals. Hence the boot software has the responsibility to configure the 
required clock sources, initialize all the AUX selectors and dividers in order to provide the 
needed clock frequencies to the various peripherals and to configure the two PLLs.

2.2.3.4.1 Oscillator by-pass (optional step)

Depending on the board configuration, it is possible to by-pass the XOSC circuit and use an 
external crystal connected to the EXTAL pins. This configuration is managed by the MC_ME 
module through the XOSC digital interface. The XOSC control register (XOSC_CTL) is 
implemented for this purpose: bit OSCBYP (XOSC_CLT[0]) can be set by software only to 
by-pass the XOSC. It can be cleared only by a reset. The code above from the reference 
software corresponds to the oscillator by-pass. Clearly this is an optional setup.

          

2.2.3.4.2 Clock tree configuration

Through the Clock Generation Module (MC_CGM) it is possible to fully configure the clock 
tree by selecting the needed clock sources and output dividers. The settings are applied by 
means of the Auxiliary Clock Selectors, through different sets of registers: DCx (Divider x 

  /* RGM errors clearing.*/

  MC_RGM.FES.R        = 0xFFFFU;

  MC_RGM.DES.R        = 0xFFFFU;

#if (SPC5_OSC_BYPASS == TRUE)

  /* If the board is equipped with an oscillator instead of a crystal then 
the

     bypass must be activated.*/

  OSC40M_DIG.CTL.B.OSCBYP = TRUE;

#endif /* SPC5_OSC_BYPASS */
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Configuration Register), SC (Select Control Register). Refer to the corresponding RM for 
the full description of the MC_CGM registers. Providing a full configuration for all clocks is 
out of the scope of this document, also because it’s strongly dependent on the final user 
application requirements. The example reference code provides some basic configuration.

          

2.2.3.4.3 Enabling XOSC

The next step requires to enable the alternative clock source that is the XOSC. This 
configuration is controlled by the Module Entry block (MC_ME). The corresponding register 
is the ME_DRUN_MC (DRUN Mode Configuration) that controls the behavior of the system 
when in DRUN execution mode.

It is needed to set bit XOSCON (ME-DRUN_MC[26]) in order to enable the External Crystal 
Oscillator. Example reference code is as above:

/* Setting the system dividers to their final values.*/

  MC_CGM.SC_DC0.R     = SPC5_CGM_SC_DC0_BITS;

  MC_CGM.SC_DC1.R     = SPC5_CGM_SC_DC1_BITS;

  MC_CGM.SC_DC2.R     = SPC5_CGM_SC_DC2_BITS;

  MC_CGM.SC_DC3.R     = SPC5_CGM_SC_DC3_BITS;

  MC_CGM.SC_DC4.R     = SPC5_CGM_SC_DC4_BITS;

  /* Setting the auxiliary dividers to their final values.*/

  MC_CGM.AC0_DC0.R    = SPC5_CGM_AC0_DC0_BITS;

  MC_CGM.AC0_DC1.R    = SPC5_CGM_AC0_DC1_BITS;

  MC_CGM.AC6_DC0.R    = SPC5_CGM_AC6_DC0_BITS;

  MC_CGM.AC9_DC0.R    = SPC5_CGM_AC9_DC0_BITS;

  MC_CGM.AC12_DC0.R   = SPC5_CGM_AC12_DC0_BITS;

  MC_CGM.AC12_DC1.R   = SPC5_CGM_AC12_DC1_BITS;

  MC_CGM.AC12_DC2.R   = SPC5_CGM_AC12_DC2_BITS;

  MC_CGM.AC12_DC3.R   = SPC5_CGM_AC12_DC3_BITS;

  MC_CGM.AC12_DC4.R   = SPC5_CGM_AC12_DC4_BITS;

  /* Setting the clock selectors to their final sources.*/

  MC_CGM.AC0_SC.R     = SPC5_CGM_AC0_SC_BITS;

  MC_CGM.AC3_SC.R     = SPC5_CGM_AC3_SC_BITS;

  MC_CGM.AC4_SC.R     = SPC5_CGM_AC4_SC_BITS;

  MC_CGM.AC6_SC.R     = SPC5_CGM_AC6_SC_BITS;

  MC_CGM.AC9_SC.R     = SPC5_CGM_AC9_SC_BITS;

  MC_CGM.AC12_SC.R    = SPC5_CGM_AC12_SC_BITS;
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The bit to be set is represented by the macro SPC5_ME_MC_XOSCON. All the others bits 
are to preserve the default value (not only the bits are writeable, but access registers is 
word-size)

Note: The system is expected to be in DRUN mode at the end of the reset procedure.

2.2.3.4.4 PLL configuration

Last part of a minimal clock configuration concerns the configuration of the two PLLs. 
Shortly, the PLL topology is cascade, where PLL0 is provided with two outputs: PHI output is 
providing the pll0_clkout signal directly, and PHI1 is instead used as reference clock source 
for the PLL1, with just one output (pll1_clkout signal). The configuration of the PLLs is 
implemented by a common digital interface PLLDIG that provides come control and status 
registers. The register that control the programming id PLLxDV consisting of PHI (and PHI1 
for PLL0) output clock reduced frequency dividers, (RFDPHI and RFDPHI1 bits), the Input 
Clock Pre-dividers (PREDIV bits) and the Loop Multiplication Factor divider (MFD bits).

Note: PREDIV and MFD must be changed while PLL is in power-down and not locked, while 
RFDPHI/RFDPHI1 can be changed while in normal mode, considering that changes will 
become effective after a disable/enable cycle.

A basic configuration can be as below code:

/* ME_MC registers bits definitions */

#define SPC5_ME_MC_SYSCLK(n)                (((uint32_t)(n)) << 0)

#define SPC5_ME_MC_SYSCLK_IRC               SPC5_ME_MC_SYSCLK(0)

#define SPC5_ME_MC_SYSCLK_XOSC              SPC5_ME_MC_SYSCLK(1)

#define SPC5_ME_MC_IRCON                    (1UL << 4)

#define SPC5_ME_MC_XOSCON                   (1UL << 5)

#define SPC5_ME_MC_FLAON(n)                 (((uint32_t)(n)) << 16)

#define SPC5_ME_MC_FLAON_NORMAL             SPC5_ME_MC_FLAON(3)

#define SPC5_ME_MC_MVRON                    (1UL << 20)

/* Enables the XOSC in order to check its functionality before proceeding

     with the initialization.*/

  MC_ME.DRUN_MC.R     = SPC5_ME_MC_SYSCLK_IRC | SPC5_ME_MC_IRCON |

                        SPC5_ME_MC_XOSCON | SPC5_ME_MC_FLAON_NORMAL |

                        SPC5_ME_MC_MVRON;
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2.2.3.5 Chip mode of operation setup

The microcontroller can execute in different modes of operation to give flexibility to the 
application to implement different use cases based on different runtime hardware 
configuration; thus it is possible to implement application profiles with different characteristic 
in terms of power consumption and processing needs.

As soon as the system will exit from the reset, is will always enter in a so called DRUN 
mode. There are also other systems modes (RESET, SAFE and TEST) and user mode 
(RUN{0,3}, HALT0, STOP0, and STADBY0) that application can switch into to implement 
different use cases in terms of power consumption and processing needs. These modes 
can be also categorized into an orthogonal classification as “running” mode and “non 
running” mode. The Table 6 will help you to understand the classification.

          

For a detailed description on the chip modes of operation, please refer to the related RM.

The execution modes are controlled by the Module Entry block (MC_ME). The whole 
configuration of the system and peripherals is realized through different levels:

1. Define which chip modes are allowed for the micro (by Mode Enable register ME_ME)

2. For each modes, define the overall system configuration in terms of power level, I/O 
output, voltage regulator, Flash status, PLLs status, XOSC, IRCOSC and system clock 
(by Mode Configuration register, ME_<mode>_MC)

3. For each peripherals, define which RUN and LP (low power) configuration/domain it 
belongs to (by Peripheral Control registers ME_PCTLn). There is a PCTLn register 

/* PLLs initialization, the changes will have effect on mode switch.*/

  PLLDIG.PLL0CR.R     = 0U;

  PLLDIG.PLL0DV.R     = SPC5_PLL0_DV_RFDPHI1(SPC5_PLL0_RFDPHI1_VALUE) |

                        SPC5_PLL0_DV_RFDPHI(SPC5_PLL0_RFDPHI_VALUE) |

                        SPC5_PLL0_DV_PREDIV(SPC5_PLL0_PREDIV_VALUE) |

                        SPC5_PLL0_DV_MFD(SPC5_PLL0_MFD_VALUE);

  PLLDIG.PLL1CR.R     = 0U;

  PLLDIG.PLL1DV.R     = SPC5_PLL1_DV_RFDPHI(SPC5_PLL1_RFDPHI_VALUE) |

                        SPC5_PLL1_DV_MFD(SPC5_PLL1_MFD_VALUE);

Table 6. Chip modes of operation

Running Not Running

System

DRUN

TEST

SAFE

RESET

User

RUN0

RUN1

RUN2

RUN3

HALT0

STOP0

STANDBY0
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associated to each IP/interface and there are up to 8 Peripheral RUN configuration and 
Peripheral Low-Power configuration.

4. For each of the 8 RUN configurations, define if the peripheral belonging to the 
configuration is active or frozen with the clock gated into the specific-running chip mode 
(by Run Peripheral Configuration registers, ME_RUN_PC{0,7})

5. For each of the 8 LP configurations, define if the peripheral belonging to the 
configuration is active or frozen with the clock gated into the specific not-running chip 
mode (by Low-Power Peripheral Configuration registers, ME_LP_PC{0,7})

Clearly the ME module gives an high flexibility and granularity by mapping the peripherals in 
different configurations, at the different chip modes allowing the user application to easily 
achieve its functional and power requirements.

The reference code provides a basic implementation that is described here thereafter:

1. All chip modes are allowed

2. Chip mode configurations are:

a) SAFE: hw reset value

b) DRUN: hw reset value plus PPL0, PLL1, XOSC  switched ON, PLL1 as system 
clock

c) RUN0: same as DRUN

d) RUN1, RUN2, RUN3: hw reset value

e) HALT0: hw reset value

f) STOP0: hw reset value

g) STANDBY0: hw reset value

3. For each peripherals, keep the default grouping (RUN_PC0 and LP_PCO)

4. RUN peripheral configurations

a) RUN_PC0: “Never run” mode, that is peripherals are OFF in all modes

b) RUN_PC1: “Always run” mode, that is peripherals are ON in all modes

c) RUN_PC2: “Normal mode run”, that is peripherals are ON in DRUN and all RUNx 
modes

d) RUN_PC3-7: “Application specific”, available to implement custom configuration 
(currently as RUN_PC2)

5. LP peripheral configurations

a) LP_PC0: “Never run” mode, that is all peripherals are OFF in all not-run modes

b) LP_PC1: ”Always run”, that is all peripherals are ON in all not-run modes 

c) LP_PC2: ”Halt only”, peripherals ON in HALT0 mode only

d) LP_PC3: “Stop only”, peripherals are ON in STOP0 mode only

e) LP_PC4-7: “Application specific”, available to implement customer configuration 
(currently peripherals are ON in HALT0 and STOP0 modes)
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/* Run modes initialization, note writes to the MC registers are verified

     by a protection mechanism, the operation success is verified at the

     end of the sequence.*/

  MC_ME.IS.R          = 8U;                     /* Resetting I_ICONF status.*/

  MC_ME.ME.R          = SPC5_ME_ME_BITS;

  MC_ME.SAFE_MC.R     = SPC5_ME_SAFE_MC_BITS;

  MC_ME.DRUN_MC.R     = SPC5_ME_DRUN_MC_BITS;

  MC_ME.RUN_MC[0].R   = SPC5_ME_RUN0_MC_BITS;

  MC_ME.RUN_MC[1].R   = SPC5_ME_RUN1_MC_BITS;

  MC_ME.RUN_MC[2].R   = SPC5_ME_RUN2_MC_BITS;

  MC_ME.RUN_MC[3].R   = SPC5_ME_RUN3_MC_BITS;

  MC_ME.HALT0_MC.R    = SPC5_ME_HALT0_MC_BITS;

  MC_ME.STOP0_MC.R    = SPC5_ME_STOP0_MC_BITS;

  MC_ME.STANDBY0_MC.R = SPC5_ME_STANDBY0_MC_BITS;

  if ((MC_ME.IS.B.I_ICONF & 1U) == 1U) {/* Configuration rejected.*/

    SPC5_CLOCK_FAILURE_HOOK();}

  /* Peripherals run and low power modes initialization.*/

  MC_ME.RUN_PC[0].R   = SPC5_ME_RUN_PC0_BITS;

  MC_ME.RUN_PC[1].R   = SPC5_ME_RUN_PC1_BITS;

  MC_ME.RUN_PC[2].R   = SPC5_ME_RUN_PC2_BITS;

  MC_ME.RUN_PC[3].R   = SPC5_ME_RUN_PC3_BITS;

  MC_ME.RUN_PC[4].R   = SPC5_ME_RUN_PC4_BITS;

  MC_ME.RUN_PC[5].R   = SPC5_ME_RUN_PC5_BITS;

  MC_ME.RUN_PC[6].R   = SPC5_ME_RUN_PC6_BITS;

  MC_ME.RUN_PC[7].R   = SPC5_ME_RUN_PC7_BITS;

  MC_ME.LP_PC[0].R    = SPC5_ME_LP_PC0_BITS;

  MC_ME.LP_PC[1].R    = SPC5_ME_LP_PC1_BITS;

  MC_ME.LP_PC[2].R    = SPC5_ME_LP_PC2_BITS;

  MC_ME.LP_PC[3].R    = SPC5_ME_LP_PC3_BITS;

  MC_ME.LP_PC[4].R    = SPC5_ME_LP_PC4_BITS;

  MC_ME.LP_PC[5].R    = SPC5_ME_LP_PC5_BITS;

  MC_ME.LP_PC[6].R    = SPC5_ME_LP_PC6_BITS;

  MC_ME.LP_PC[7].R    = SPC5_ME_LP_PC7_BITS;

/* Switches again to DRUN mode (current mode) in order to update the settings.*/

  if (SPCSetRunMode(SPC5_RUNMODE_DRUN) == CLOCK_FAILED) {

    SPC5_CLOCK_FAILURE_HOOK();}
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2.2.4 DATA sections handling

At this stage all the early platform initialization steps have been completed. Just before the 
Boot CPU could jump to user application code for executing the application, the “C runtime” 
code needs to cope with the DATA sections of the application binary. 

2.2.4.1 Clearing BSS sections

The BSS sections need to be zero-ed as required by the C language semantic. A simple 
loop for clearing the BSS in memory will look like:

          

2.2.4.2 Copying initialized DATA section from flash to RAM

The DATA sections containing all the initialized data must be copied from the application 
image into the System RAM. The example code will consider a boot configuration where the 
application is already loaded in memory by some debug tools, thus not executing from flash. 
In that case copying DATA sections is not a needed action. The part of the reference code 
where this copy is done is as below:

Late platform initialization and main execution

        /* BSS clearing */

        e_lis       %r4, HI(__bss_start__)

        e_or2i      %r4, LO(__bss_start__)

        e_lis       %r5, HI(__bss_end__)

        e_or2i      %r5, LO(__bss_end__)

        se_li       %r7, 0

.bssloop:

        cmpl        cr0, %r4, %r5

        se_bge      .bssend

        se_stw      %r7, 0(%r4)

        se_addi     %r4, 4

        se_b        .bssloop

.bssend:
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2.2.5 Late platform initialization and main jump

All the basic tasks required to execute any application on the microcontrollers have been 
done. The reference code will provide an hook for the end application to execute any 
custom tasks for further configuration and/or platform tuning and optimization. The end-user 
will require eventually to implement such hook “__late_init”. After that the code will branch to 
the ‘main’ C symbol. Eventually an exit handler could be implemented for cleanup purpose 
(application provide a fake empty implementation). The corresponding code is as below:

#if !BOOT_LOAD_IN_RAM

        /* DATA initialization */

        e_lis       %r4, HI(__romdata_start__)

        e_or2i      %r4, LO(__romdata_start__)

        e_lis       %r5, HI(__data_start__)

        e_or2i      %r5, LO(__data_start__)

        e_lis       %r6, HI(__data_end__)

        e_or2i      %r6, LO(__data_end__)

.dataloop:

        cmpl        cr0, %r5, %r6

        se_bge      .dataend

        se_lwz      %r7, 0(%r4)

        se_addi     %r4, 4

        se_stw      %r7, 0(%r5)

        se_addi     %r5, 4

        se_b        .dataloop

.dataend:

#endif
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2.3 Multicore system startup

As described in Section 1.3: MCU Cores features the SPC58xCx/SPC58xG8x 
microcontrollers are in a multicore configuration; excluding the HSM and the Checker code, 
we have two general purpose CPUs into SPC58xCx and three general purpose CPUs into 
SPC58xG8x. In Section 2.1: Start-up flow (high-level view) the start-up flow for a single-core 
configuration has been described. In this section it will be described the multi-core scenario 
with the different possibility that can be implemented.

2.3.1 Multi-core boot (by CPU)

In this case, the actions to boot the secondary cores are taken by the Boot CPU that is the 
only one woken-up at the end of the reset procedure. This is the only way to have a multi-
core boot when the BAF code is not executed (SSCM will only dispatch reset vector to Boot 
CPU).

Boot CPU will perform usual system initialization (core and platform) then it will wake-up the 
other secondary cores, providing dedicated entry point to each core, through the Module 
Entry module (MC_ME).

The code running on the secondary cores will perform all the mandatory initialization steps 
as executed by main core and will skip the platform setup (it must be done once by the Boot 
CPU only). All the secondary cores will then start end executing the user application stuff 
that can be completely different by the task executed by the main core. The split of the user 

        /*

         * Late initialization.

         */

        e_bl        __late_init

        /*

         * Main program invocation.

         */

        e_bl        main

        e_b         _main_exit_handler

        /*

         * Default main exit code, infinite loop.

         */

        .weak       _main_exit_handler

        .globl      _main_exit_handler

        .type       _main_exit_handler, @function

_main_exit_handler:

        e_b         _main_exit_handler
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tasks across the different CPUs is tightly coupled and dependent by the complete end user 
application.

2.3.1.1 Module Entry support for multi-core boot

The MC_ME not only controls chip mode an, its configuration and peripheral run 
configuration for the various run and non-run modes, but it is also provided with clock gating 
and boot address controls for the secondary cores, through a set of registers:

 Core Control Register N (ME_CCTLn): it controls if the specified core is disabled 
(frozen with its clock gated) or running for each chip mode (run and non-run modes). 
Note that all cores are always disabled in the non-run modes (STANDBY0, STOP0 and 
HALT0); conversely the Boot CPU of the microcontroller (core_2) is by default enabled 
and running in all the run modes, both system (DRUN, SAFE, TEST) and user 
(RUN0..3).

 Core Address Register N (ME_CADDRn): the lowest bits [0:29] provides the boot 
address of the corresponding core at the next exit from a reset, while the bit 31 [RMC, 
Reset on Mode Change] determines whether the core should be reset (RMC: 1) or not 
(RMC: 0) at the next mode change where the target mode includes the specified core 
in the running configuration.

Thus, in order to trigger a software controlled boot of one of the secondary core, the 
following steps must be executed:

1. Identify a target mode for the next transition (it could be the same mode as the current 
one, i.e. DRUN). Note that the target mode must be allowed in ME_ME register

2. Make sure that the specified CPU is enabled for the target mode (ME_CCTLx)

3. Setup the boot address and enable the RMC bit (ME_CADDRx)

4. Issue a mode transition for the chosen target mode. This is achieved in multiple steps

a) Write key value (0x5AF0) in MC_MCTL[KEY] bits and chip mode value in 
MC_MCTL[TARGET_MODE] bits

b) Write it again but using the inverted key value (0xA50F)

c) Check that there are not pending mode transition by inspecting 
ME_GS[S_MTRANS] bit

d) Check that the current mode is the expected one by inspecting 
ME_GS[S_CURRENT_MODE] bits.

See Table 7 for a summary view of the mapping between the ME_CADDRx/ME_CCTLx 
registers and the CPUs available on the SPC58xCx/SPC58xG8x family microcontrollers.

          

Table 7. ME_CADDRx/ME_CCTLx registers mapping

Register id X SPC58ECx SPC5NG8x

1 Core_2 Core_2

2 Core_0 Core_0

3 — Core_1

4 HSM HSM
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2.3.2 Multi-core boot (by BAF)

In case of the BAF code is executed by the Boot CPU stimulated by the SSCM, depending 
on the configuration written into the Boot header, more than one CPUs can be woken-up all 
together at the end of the BAF code execution and start executing user code at the different 
vector addresses provided into the header. See Table 4 for the description of the Boot 
Record searched by the BAF code.

The work split is exactly the same as in the first case: Boot CPU will usually perform core 
and platform initialization, while the secondary cores will execute only core specific 
initialization. Then all the cores will start executing the end user application. Some 
synchronization will need to be implemented in user application to ensure that the system is 
in the proper state before executing its duties (this strongly depend on the tasks that are 
performed by the CPU).
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Appendix A Further Information

A.1 Reference documents

1. e200z4 Power Architecture® Core Reference Manuals

2. SPC584Cx/SPC58EC8x 32-bit MCU family built on the Power Architecture® for 
automotive body electronics applications (RM0407, Doc ID 028117)

3. SPC58NE84x/SPC58xG84x 32-bit Power Architecture® microcontroller for automotive 
ASILD applications (RM0391, Doc ID 027214)

A.2 Acronyms and abbreviations
          

Table 8. Acronyms and abbreviations

Acronyms Meaning

BAM Boot Assist Module

BAF Boot Assist Flash

BTB Branch Target Buffer

CPU Central Processing Unit

DCache Data Cache

DCF Device Configuration Format

DMEM Data Memory (internal to the core)

HSM Hardware Security Module

ECC Error Correcting Code

GHS Green Hills (Compiler)

ICache Instruction Cache

IMEM Instruction Memory (internal to the core)

LSM Lock Step Mode

MC_CGM Clock Generation Module

MC_ME Mode Entry Module

RGM Reset Generation Module

MPU Memory Protection Unit

PMC Power Management Controller

PLL Phase Locked Loop
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Revision history

          

Table 9. Document revision history

Date Revision Changes

24-Feb-2017 1 Initial release.

04-Sep-2017 2

In Section 2.2.1.2: Clearing of all core registers, 
added paragraph “It's also useful to cleanup CPU 
register...” and relative code.

In Section 2.2.1.6: Caches initialization, updated 
“se_andi” with “e_and2i.” code.

Removed “ST Restricted” watermark.
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