Single 4×1 and Dual 2×1 Multiplexers

DESCRIPTION

The DG9414, a single 4 to 1 multiplexer, and the DG9415, a dual 2×1 multiplexer, are monolithic CMOS analog devices designed for high performance low voltage operation. Combining low power, high speed, low on-resistance and small physical size, the DG9414 and DG9415 are ideal for portable and battery powered applications requiring high performance and efficient use of board space.
Both the DG9414 and DG9415 are built on Vishay Siliconix's low voltage BCD-15 process. Minimum ESD protection, per Method 3015.7, is 2000 V . An epitaxial layer prevents latchup. Break-before-make is guaranteed for DG9415.

FEATURES

- Low voltage operation (+2.7 V to +12 V)
- Low on-resistance - R $\mathrm{RS}_{\mathrm{DS}}(\mathrm{on}): 14 \Omega$
- Low power consumption
- TTL compatible
- ESD protection > 2000 V (method 3015.7)
- Available in TSSOP-10 (aka MSOP-10)
- Compliant to RoHS Directive 2002/95/EC

BENEFITS

- High accuracy
- Simple logic interface
- Reduce board space

APPLICATIONS

- Battery operated systems
- Portable test equipment
- Sample and hold circuits
- Cellular phones
- Communication systems
- Networking equipment

RoHS complant

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

$\overline{\mathbf{E N}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	On Switch
1	X	X	None
0	0	0	NO_{0}
0	0	1	NO_{1}
0	1	0	NO_{2}
0	1	1	NO_{3}

X = Do not care

$\overline{\mathbf{E N}}$	$\mathbf{A}_{\mathbf{0}}$	On Switch
1	X	None
0	0	NC_{1} NC_{2}
0	1	NO_{1} NO_{2}

X = Do not care

ORDERING INFORMATION

Temp Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	MSOP-10	DG9414DQ-T1-E3
		DG9415DQ-T1-E3

ABSOLUTE MAXIMUM RATINGS	Limit	
Parameter	-0.3 to +13	V
Reference V+ to GND	-0.3 to $(\mathrm{V}++0.3)$	
IN, COM, NC, NO	± 20	m
Continuous Current (Any terminal)	± 40	
Peak Current (Pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle)	>2000	V
ESD (Method 3015.7)	-65 to 150	${ }^{\circ} \mathrm{C}$
Storage Temperature (D Suffix)		

Notes:
a. Signals on S_{X}, D_{X} or $I N_{X}$ exceeding $V+$ or V - will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads soldered or welded to PC board.

SPECIFICATIONS (V+ = 3 V)							
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}_{+}=3 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.4 \mathrm{~V} \text { or } 2.4 \mathrm{~V}^{\mathrm{e}}$	Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min. ${ }^{\text {c }}$	Typ. ${ }^{\text {b }}$	Max. ${ }^{\text {c }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\mathrm{V}_{\text {ANALOG }}$		Full	0		V+	V
On-Resistance	R_{ON}	$\begin{gathered} \mathrm{V}+=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1 \mathrm{~V} / 1.5 \mathrm{~V} / 2 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}} \text { or } \mathrm{I}_{\mathrm{NC}}=5 \mathrm{~mA} \end{gathered}$	Room Full		63	$\begin{gathered} \hline 97 \\ 101 \end{gathered}$	
$\mathrm{R}_{\text {ON }}$ Match ${ }^{\text {d }}$	$\Delta \mathrm{R}_{\mathrm{ON}}$		Room		3	11	Ω
$\mathrm{R}_{\text {ON }}$ Flatness ${ }^{\text {d,f }}$	$\begin{gathered} \mathrm{R}_{\mathrm{ON}} \\ \text { Flatness } \end{gathered}$		Room		14	33	
NO or NC Off Leakage Current ${ }^{9}$	$\mathrm{I}_{\mathrm{NO} / \mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}+=3.3, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V} / 3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V} / 0.3 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} -1 \\ -10 \\ \hline \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	
COM Off Leakage Current ${ }^{9}$	$\mathrm{I}_{\text {com(off) }}$		Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	nA
Channel-On Leakage Current ${ }^{9}$	$\mathrm{I}_{\text {com(on) }}$	$\begin{gathered} \mathrm{V}_{+}=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=0.3 \mathrm{~V} / 3 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	
Digital Control							
Input Current ${ }^{9}$	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full	-1		1	$\mu \mathrm{A}$
Input High Voltage ${ }^{\text {d }}$	$\mathrm{V}_{\text {INH }}$		Full	1.6			
Input Low Voltage ${ }^{\text {d }}$	$\mathrm{V}_{\text {INL }}$		Full			0.4	
Dynamic Characteristics							
Turn-On Time	${ }^{\text {ton }}$	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}$	Room Full		102	$\begin{aligned} & 125 \\ & 142 \end{aligned}$	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room Full		45	$\begin{aligned} & 68 \\ & 75 \end{aligned}$	
Break-Before-Make Time	t_{D}		Room	7	78		
Transition Time	$t_{\text {trans }}$	$\mathrm{V}_{\mathrm{NO}}=1.5 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}}=0 \mathrm{~V} / 1.5 \mathrm{~V}$	Room Full		81	$\begin{aligned} & 128 \\ & 144 \end{aligned}$	
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$	Room		3		pC
Off-Isolation	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-58		
Channel-to-Channel Crosstalk (DG9415)	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}$	Room		-64		dB
NO, NC Off Capacitance	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$, $\mathrm{C}_{\mathrm{NC} \text { (off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	Room		11		pF
			Room		10		
COM Off Capacitance	$\mathrm{C}_{\text {com(off) }}$		Room		26		
			Room		13		
COM On Capacitance	$\mathrm{C}_{\text {COM(on) }}$		Room		43		
			Room		25		
Power Supply							
Power Supply Range	V+			2.7		3.3	V
Power Supply Current ${ }^{\text {h }}$	I+	$\mathrm{V}+=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V}$ or 3.3 V	Full			1	$\mu \mathrm{A}$

SPECIFICATIONS (V+=5 V)									
Parameter	Symbol	Test Conditions Otherwise Unless Specified$\mathrm{V}+=5 \mathrm{~V}, \pm 10 \%, \mathrm{~V}_{\mathrm{IN}}=0.8 \mathrm{~V} \text { or } 2.4 \mathrm{~V}^{\mathrm{e}}$		Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ \hline \end{gathered}$			Unit	
				Min. ${ }^{\text {c }}$	Typ. ${ }^{\text {b }}$	Max. ${ }^{\text {c }}$			
Analog Switch									
Analog Signal Range ${ }^{\text {d }}$	$\mathrm{V}_{\text {ANALOG }}$				Full	0		V+	V
On-Resistance	R_{ON}	$\begin{gathered} \mathrm{V}_{+}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=1.5 \mathrm{~V} / 2.5 \mathrm{~V} / 3.5 \mathrm{~V} \\ \mathrm{I}_{\mathrm{NO}} \text { or } \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA} \end{gathered}$		Room Full		33	$\begin{aligned} & 56 \\ & 60 \end{aligned}$		
$\mathrm{R}_{\text {ON }}$ Match	$\Delta \mathrm{R}_{\text {ON }}$			Room		2	10	Ω	
$\mathrm{R}_{\text {ON }}$ Flatness ${ }^{\text {f }}$	R_{ON} Flatness			Room		10	20		
NO or NC Off Leakage Current ${ }^{9}$	$\mathrm{I}_{\mathrm{NO} / \mathrm{NC} \text { (off) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$		$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	$\begin{gathered} -1 \\ -10 \\ \hline \end{gathered}$		$\begin{gathered} \hline 1 \\ 10 \\ \hline \end{gathered}$	nA	
COM Off Leakage Current ${ }^{9}$	$\mathrm{I}_{\text {com(off) }}$			$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$		
Channel-On Leakage Current ${ }^{9}$	$\mathrm{I}_{\text {com(on) }}$	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=\mathrm{V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \end{gathered}$		Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \\ \hline 1 \\ 10 \end{gathered}$		
Digital Control									
Input Current ${ }^{\text {h }}$	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or V_{+}		Full	-1		1	$\mu \mathrm{A}$	
Input High Voltage ${ }^{\text {d }}$	$\mathrm{V}_{\text {INH }}$			Full	1.8			V	
Input Low Voltage ${ }^{\text {d }}$	$\mathrm{V}_{\text {INL }}$			Full			0.6		
Dynamic Characteristics									
Turn-On Time ${ }^{\text {h }}$	t_{ON}	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}$		Room Full		56	$\begin{array}{r} 77 \\ 86 \\ \hline \end{array}$	ns	
Turn-Off Time ${ }^{\text {h }}$	$t_{\text {OFF }}$			$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		25	$\begin{aligned} & 46 \\ & 50 \\ & \hline \end{aligned}$		
Break-Before-Make Timet ${ }^{\text {h }}$	t_{D}			Room	7	34			
Transition Time	$t_{\text {trans }}$	$\mathrm{V}_{\mathrm{NO}}=3 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{NC}}=0 \mathrm{~V} / 3 \mathrm{~V}$		Room Full		47	$\begin{aligned} & 77 \\ & 84 \end{aligned}$		
Off-Isolation	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$		Room		-58		dB	
Channel-to-Channel Crosstalk (DG9415)	$\mathrm{X}_{\text {TALK }}$	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}$		Room		-64			
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\text {gen }}=0 \mathrm{~V}, \mathrm{R}_{\text {gen }}=0 \Omega$		Room		6		pC	
NO, NC Off Capacitance	$\mathrm{C}_{\mathrm{NO} \text { (off), }}$	$\mathrm{f}=1 \mathrm{MHz}$	DG9414	Room		11		pF	
NO, NC Off Capacitance	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$		DG9415	Room		10			
COM Off Capacitance	$\mathrm{C}_{\text {COM(off) }}$		DG9414	Room		25			
			DG9415	Room		13			
COM On Capacitance	$\mathrm{C}_{\text {com(on) }}$		DG9414	Room		42			
			DG9415	Room		24			
Power Supply									
Power Supply Range	V+				4.5		5.5	V	
Power Supply Current ${ }^{\text {h }}$	I+	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 5.5 V		Full			1	$\mu \mathrm{A}$	

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating suffix.
b. Typical values are for design aid only, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Difference of min and max values.
g. Guaranteed by 12 V leakage testing, not production tested.
h. Guaranteed by worst case test conditions and not subject to test.

Notes:
a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. Typical values are for design aid only, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Difference of min and max values.
g. Guaranteed by 12 V leakage testing, not production tested.
h. Guaranteed by worst case test conditions and not subject to test.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$, unless otherwise noted)

Transistion Time vs. Temperature (DG9414)

Switching Time vs. Temperature

Insertion Loss, Off-Isolation Crosstalk vs. Frequency (DG9415)

Transistion Time vs. Temperature (DG9415)

Insertion Loss, Off-Isolation Crosstalk vs. Frequency (DG9414)

Switching Threshold vs. Supply Voltage

TYPICAL CHARACTERISTICS (25 ${ }^{\circ} \mathrm{C}$, unless otherwise noted)

SCHEMATIC DIAGRAM (Typical Channel)

Figure 1.

TEST CIRCUITS

Note: Logic input waveform is inverted for switches that have the opposite logic sense control

Figure 2. Switching Time

TEST CIRCUITS

Figure 3. Break-Before-Make

Figure 4. Transition Time

Figure 5. Charge Injection

TEST CIRCUITS

Figure 6. Crosstalk

Figure 7. Off Isolation

Figure 8. Source/Drain Capacitances
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?71766.

MSOP: 10-LEADS

JEDEC Part Number: MO-187, (Variation AA and BA)

NOTES:

1. Die thickness allowable is 0.203 ± 0.0127.
2. Dimensioning and tolerances per ANSI.Y14.5M-1994.
3.

Dimensions " D " and " E_{1} " do not include mold flash or protrusions, and are measured at Datum plane $-\mathrm{H}^{-}$, mold flash or protrusions shall not exceed 0.15 mm per side.
4.
5.
6.

Dimension is the length of terminal for soldering to a substrate
Terminal positions are shown for reference only.
Formed leads shall be planar with respect to one another within 0.10 mm at seating plane.

The lead width dimension does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the lead width dimension at maximum material condition. Dambar cannot be located on the lower radius or the lead foot. Minimum space between protrusions and an adjacent lead to be 0.14 mm . See detail "B" and Section "C-C".
8. Section "C-C" to be determined at 0.10 mm to 0.25 mm from the lead tip.
9. Controlling dimension: millimeters
10. This part is compliant with JEDEC registration MO-187, variation AA and BA.
11. Datums -A- and -B- to be determined Datum plane -H-

Exposed pad area in bottom side is the same as teh leadframe pad size.

Detail "B" (Scale: 30/1) Dambar Protrusion

End View
$\mathrm{N}=10 \mathrm{~L}$

Dim	MILLIMETERS			Note
	Min	Nom	Max	
A	-	-	1.10	
A_{1}	0.05	0.10	0.15	
A_{2}	0.75	0.85	0.95	
b	0.17	-	0.27	8
b_{1}	0.17	0.20	0.23	8
c	0.13	-	0.23	
C_{1}	0.13	0.15	0.18	
D	3.00 BSC			3
E	4.90 BSC			
E_{1}	2.90	3.00	3.10	3
e	0.50 BSC			
e_{1}	2.00 BSC			
L	0.40	0.55	0.70	4
N	10			5
\propto	0°	4°	6°	
ECN: T-02080—Rev. C, 15-Jul-02 DWG: 5867				

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

