
CY29FCT52T 8-BIT REGISTERED TRANSCEIVER

SCCS010A - MAY 1994 - REVISED OCTOBER 2001

- Function, Pinout, and Drive Compatible With FCT, F Logic, and AM2952
- Reduced V_{OH} (Typically = 3.3 V) Versions of Equivalent FCT Functions
- Edge-Rate Control Circuitry for Significantly Improved Noise Characteristics
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- I_{off} Supports Partial-Power-Down Mode Operation
- Matched Rise and Fall Times
- Fully Compatible With TTL Input and Output Logic Levels
- 64-mA Output Sink Current
 32-mA Output Source Current

description

The CY29FCT52T has two 8-bit back-to-back registers that store data flowing in both directions between two bidirectional buses. Separate clock, clock enable, and 3-state output-enable signals are provided for each register. Both A outputs and B outputs are specified to sink 64 mA.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

PIN DESCRIPTION

NAME	DESCRIPTION
Α	A register inputs or B register outputs
В	B register inputs or A register outputs
CPA	Clock for the A register. When CEA is low, data enters the A register on the low-to-high transition of the CPA signal.
CEA	Clock enable for the A register. When $\overline{\text{CEA}}$ is low, data enters the A register on the low-to-high transition of the CPA signal. When $\overline{\text{CEA}}$ is high, the A register holds its contents, regardless of CPA signal transitions.
OEA	Output enable for the A register. When OEA is low, the A register outputs are enabled onto the B lines. When OEA is high, the A outputs are in the high-impedance state.
СРВ	Clock for the B register. When CEB is low, data enters the B register on the low-to-high transition of the CPB signal.
CEB	Clock enable for the B register. When CEB is low, data enters the B register on the low-to-high transition of the CPB signal. When CEB is high, the B register holds its contents, regardless of CPA signal transitions.
OEB	Output enable for the B register. When OEB is low, the B register outputs are enabled onto the A lines. When OEB is high, the B outputs are in the high-impedance state.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

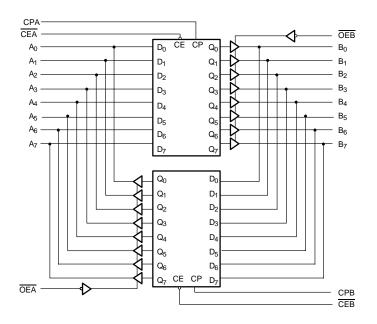
TA	PAC	CKAGET	SPEED (ns)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	QSOP – Q	Tape and reel	6.3	CY29FCT52CTQCT	29FCT52C
–40°C to 85°C		Tube	6.3	CY29FCT52CTSOC	20505520
	SOIC – SO	Tape and reel	6.3	CY29FCT52CTSOCT	29FCT52C

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Function Tables

FUNCTION TABLE

	INPUTS		INTERNAL	FUNCTION
D	СР	CE	Q	FUNCTION
Х	Х	Н	NC	Hold data
L		L	L	Load data
Н		L	Н	Load data


H = High logic level, L = Low logic level, X = Don't care, NC = No change

OUTPUT CONTROL

ŌĒ	INTERNAL Q	Y OUTPUTS	FUNCTION
Н	Х	Z	Disable outputs
L	L	L	Enoble suiteute
L	Н	Н	Enable outputs

H = High logic level, L = Low logic level, X = Don't care, Z = High impedance (off) state.

logic diagram

SCCS010A - MAY 1994 - REVISED OCTOBER 2001

absolute maximum rating over operating free-air temperature range (unless otherwise noted)†

Supply voltage range to ground potential		0.5 V to 7 V
DC input voltage range		–0.5 V to 7 V
DC output voltage range		0.5 V to 7 V
DC output current (maximum sink current/	pin)	120 mA
Package thermal impedance, θ _{JA} (see No	te 1): Q package	61°C/W
	SO package	46°C/W
Ambient temperature range with power ap	plied, T _A	–65°C to 135°C
Storage temperature range, T _{stq}		65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 2)

		MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.75	5	5.25	V
VIH	High-level input voltage	2			V
V _{IL}	Low-level input voltage			0.8	٧
ЮН	High-level output current			-32	mA
loL	Low-level output current			64	mA
TA	Operating free-air temperature	-40		85	°C

NOTE 2: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51-7.

SCCS010A - MAY 1994 - REVISED OCTOBER 2001

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT	
VIK	$V_{CC} = 4.75 \text{ V},$	$V_{CC} = 4.75 \text{ V}, \qquad I_{IN} = -18 \text{ mA}$					
V	Vaa 475 V	I _{OH} = -32 mA		2			٧
VOH	V _{CC} = 4.75 V	$I_{OH} = -15 \text{ mA}$		2.4	3.3		V
VOL	$V_{CC} = 4.75 \text{ V},$	I _{OL} = 64 mA			0.3	0.55	V
V _H	All inputs				0.2		V
lμ	$V_{CC} = 5.25 \text{ V},$	$V_{IN} = V_{CC}$				5	μΑ
lін	$V_{CC} = 5.25 \text{ V},$	$V_{IN} = 2.7 \text{ V}$				±1	μΑ
I _{IL}	$V_{CC} = 5.25 \text{ V},$	V _{IN} = 0.5 V				±1	μΑ
los [‡]	V _{CC} = 5.25 V,	V _{OUT} = 0 V	-60	-120	-225	mA	
l _{off}	$V_{CC} = 0 V$,	$V_{CC} = 0 \text{ V}, \qquad V_{OUT} = 4.5 \text{ V}$					μΑ
Icc	$V_{CC} = 5.25 \text{ V}, V_{IN} \le 0.25 \text{ V}$	$2 \text{ V, V}_{IN} \ge \text{V}_{CC} - 0.2 \text{ V}$			0.1	0.2	mA
ΔlCC	V _{CC} = 5.25 V, V _{IN} = 3	.4 V\$, f ₁ = 0, Outputs ope	n		0.5	2	mA
ICCD¶	V _{CC} = 5.25 V, One inp OEA or OEB = GND, V	ut switching at 50% duty of $I_{N} \le 0.2 \text{ V or } V_{IN} \ge V_{CC}$	cycle, Outputs open, – 0.2 V		0.06	0.12	mA/ MHz
	V _{CC} = 5.25 V,	One bit switching at f ₁ = 5 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$		0.7	1.4	
lc#	$f_0 = 10 \text{ MHz},$	at 50% duty cycle	$V_{IN} = 3.4 \text{ V or GND}$		1.2	3.4	mA
IC"	Outputs open, OEA or OEB = GND	Eight bits switching at f ₁ = 2.5 MHz	$V_{IN} \le 0.2 \text{ V or}$ $V_{IN} \ge V_{CC} - 0.2 \text{ V}$		1.6	3.2	mA
		at 50% duty cycle	$V_{IN} = 3.4 \text{ V or GND}$		3.9	12.2	
C _i					5	10	pF
Co					9	12	pF

[†] Typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

 $^{\#}$ IC = ICC + \triangle ICC \times DH \times NT + ICCD (f₀/2 + f₁ \times N₁)

Where:

I_C = Total supply current

I_{CC} = Power-supply current with CMOS input levels

 ΔI_{CC} = Power-supply current for a TTL high input ($V_{IN} = 3.4 \text{ V}$)

 D_H = Duty cycle for TTL inputs high N_T = Number of TTL inputs at D_H

ICCD = Dynamic current caused by an input transition pair (HLH or LHL)

f₀ = Clock frequency for registered devices, otherwise zero

f₁ = Input signal frequency

N₁ = Number of inputs changing at f₁

All currents are in milliamperes and all frequencies are in megahertz.

Values for these conditions are examples of the ICC formula.

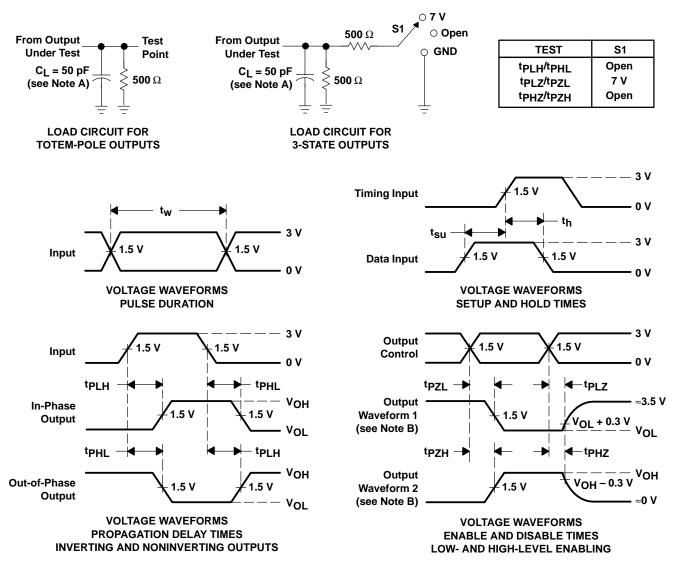
Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample-and-hold techniques are preferable to minimize internal chip heating and more accurately reflect operational values. Otherwise, prolonged shorting of a high output can raise the chip temperature well above normal and cause invalid readings in other parametric tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

[§] Per TTL driven input (V_{IN} = 3.4 V); all other inputs at V_{CC} or GND

This parameter is derived for use in total power-supply calculations.

CY29FCT52T 8-BIT REGISTERED TRANSCEIVER

SCCS010A - MAY 1994 - REVISED OCTOBER 2001


timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

	PARAMETER							
t _W	Pulse duration, clock		3		ns			
Ţ.	Catura tima hatara CDAA an CDDA	Data	2.5					
t _{su}	Setup time, before CPA↑ or CPB↑	CEA or CEB	3		ns			
Ĺ.	Hold time, after CPA↑ or CPB↑	Data	1.5					
th	Hold time, after CPAT of CPBT	2		ns				

switching characteristics over operating free-air temperature range (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	MAX	UNIT
t _{PLH}	CPA, CPB	A, B	2	6.3	no
tPHL	CPA, CPB	А, Б	2	6.3	ns
^t PZH	OEA or OEB	A or B	1.5	7	ne
^t PZL	OEA OI OEB	AUB	1.5	7	ns
^t PHZ	OEA or OEB	A or B	1.5	6.5	ns
t _{PLZ}	OEA 01 OEB	A 01 B	1.5	6.5	115

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CY29FCT52CTQCT	ACTIVE	SSOP	DBQ	24	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	29FCT52C	Samples
CY29FCT52CTSOC	ACTIVE	SOIC	DW	24	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	29FCT52C	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

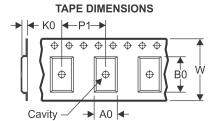
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

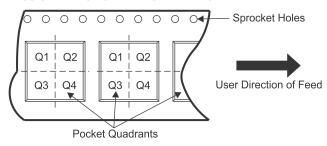
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

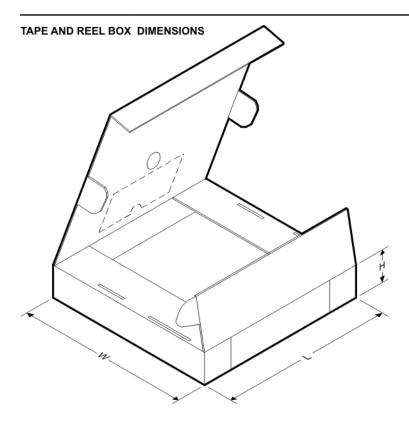

10-Dec-2020

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022


TAPE AND REEL INFORMATION

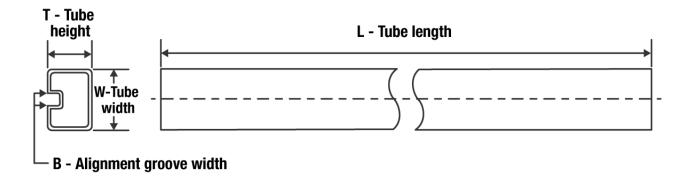
Α0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CY29FCT52CTQCT	SSOP	DBQ	24	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

www.ti.com 5-Jan-2022

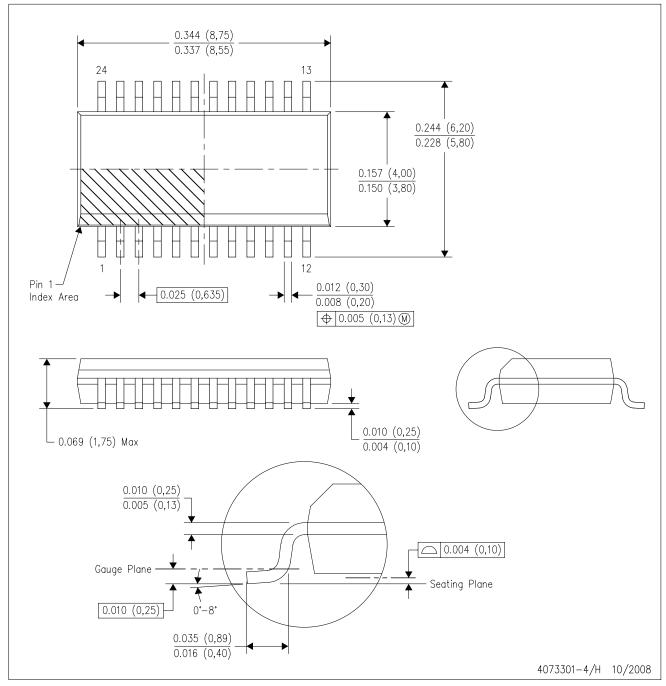

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CY29FCT52CTQCT	SSOP	DBQ	24	2500	853.0	449.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2022

TUBE

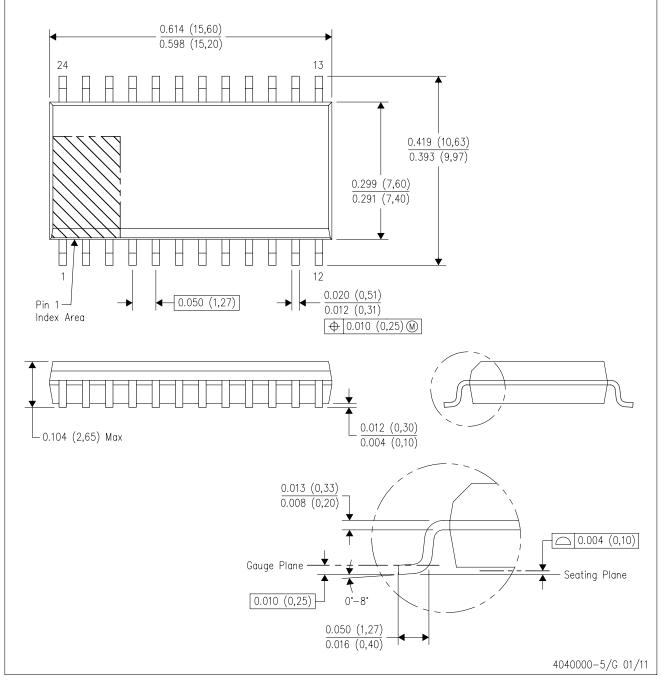


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
CY29FCT52CTSOC	DW	SOIC	24	25	506.98	12.7	4826	6.6

DBQ (R-PDSO-G24)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.
- D. Falls within JEDEC MO-137 variation AE.

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AD.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated