DL PACKAGE

SCAS199B - JANUARY 1991 - REVISED APRIL 1998

- Free-Running Read and Write Clocks Can Be Asynchronous or Coincident
- Read and Write Operations Synchronized to Independent System Clocks
- Input-Ready Flag Synchronized to Write Clock
- Output-Ready Flag Synchronized to Read Clock
- 64 Words by 18 Bits
- Low-Power Advanced CMOS Technology
- Half-Full Flag and Programmable Almost-Full/Almost-Empty Flag
- Bidirectional Configuration and Width Expansion Without Additional Logic
- Fast Access Times of 12 ns With a 50-pF Load and All Data Outputs Switching Simultaneously
- Data Rates up to 67 MHz
- Pin-to-Pin Compatible With SN74ACT7803 and SN74ACT7805
- Packaged in Shrink Small-Outline 300-mil Package Using 25-mil Center-to-Center Spacing

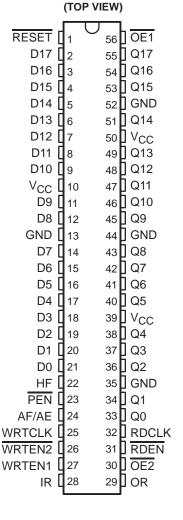
description

The SN74ACT7813 is a 64-word \times 18-bit FIFO suited for buffering asynchronous datapaths up to 67-MHz clock rates and 12-ns access times. Two

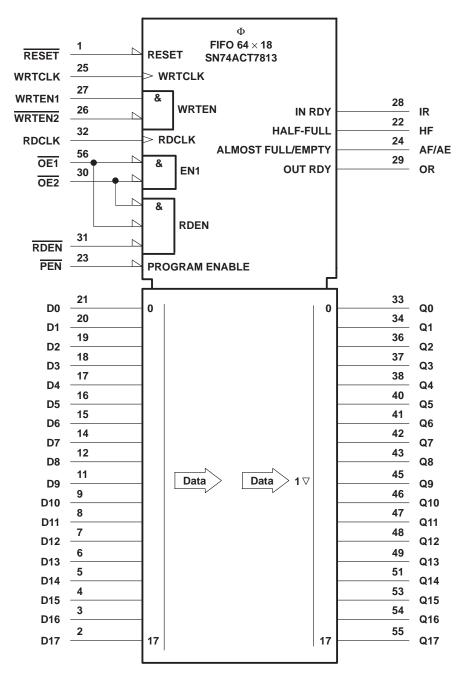
devices can be configured for bidirectional data buffering without additional logic. Multiple distributed V_{CC} and GND pins, along with Texas Instruments patented output edge control (OEC™) circuit, dampen simultaneous switching noise.

The write clock (WRTCLK) and read clock (RDCLK) are free running and can be asynchronous or coincident. Data is written to memory on the rising edge of WRTCLK when WRTEN1 is high, WRTEN2 is low, and input ready (IR) is high. Data is read from memory on the rising edge of RDCLK when RDEN, OE1, and OE2 are low and output ready (OR) is high. The first word written to memory is clocked through to the output buffer regardless of the RDEN, OE1, and OE2 levels. The OR flag indicates that valid data is present on the output buffer.

The FIFO can be reset asynchronously to WRTCLK and RDCLK. RESET must be asserted while at least four WRTCLK and four RDCLK rising edges occur to clear the synchronizing registers. Resetting the FIFO initializes the IR, OR, and half-full (HF) flags low and the almost-full/almost-empty (AF/AE) flag high. The FIFO must be reset upon power up.

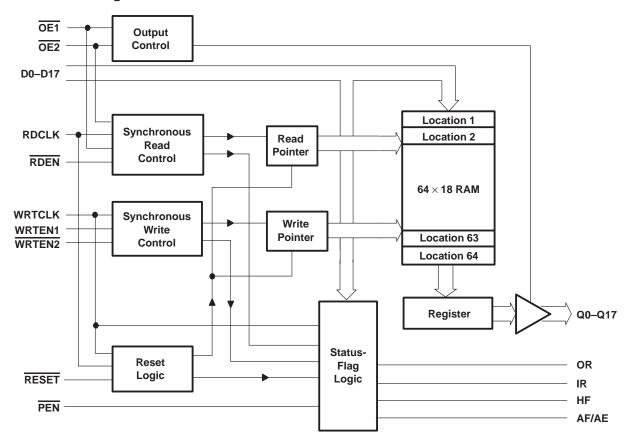

The SN74ACT7813 is characterized for operation from 0°C to 70°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


Widebus and OEC are trademarks of Texas Instruments Incorporated.

TEXAS INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

Copyright © 1998, Texas Instruments Incorporated


logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

functional block diagram

Terminal Functions

TERMINAL			
NAME	NO.	I/O	DESCRIPTION
AF/AE	24	0	Almost-full/almost-empty flag. Depth offset values can be programmed for AF/AE, or the default value of 8 can be used for both the AE offset (X) and the AF offset (Y). AF/AE is high when memory contains X or fewer words or $(64 - Y)$ or more words. AF/AE is high after reset.
D0-D17	21–14, 12–11, 9–2	I	18-bit data input port
HF	22	0	Half-full flag. HF is high when the FIFO memory contains 32 or more words. HF is low after reset.
IR	28	0	Input-ready flag. IR is synchronized to the low-to-high transition of WRTCLK. When IR is low, the FIFO is full and writes are disabled. IR is low during reset and goes high on the second low-to-high transition of WRTCLK after reset.
OE1, OE2	56, 30	I	Output enables. When OE1, OE2, and RDEN are low and OR is high, data is read from the FIFO on a low-to-high transition of RDCLK. When either OE1 or OE2 is high, reads are disabled and the data outputs are in the high-impedance state.
OR	29	0	Output-ready flag. OR is synchronized to the low-to-high transition of RDCLK. When OR is low, the FIFO is empty and reads are disabled. Ready data is present on Q0–Q17 when OR is high. OR is low during reset and goes high on the third low-to-high transition of RDCLK after the first word is loaded to empty memory.
PEN	23	-	Program enable. After reset and before the <u>first</u> word is written to the FIFO, the binary value on D0–D4 is latched as an AF/AE offset value when <u>PEN</u> is low and WRTCLK is high.
Q0-Q17	33–34, 36–38, 40–43, 45–49, 51, 53–55	0	The 18-bit data output port. After the first valid write to empty memory, the first word is output on Q0–Q17 on the third rising edge of RDCLK. OR also is asserted high at this time to indicate ready data. When OR is low, the last word read from the FIFO is present on Q0–Q17.
RDCLK	32	I	Read clock. RDCLK is a continuous clock and can be asynchronous or coincident to WRTCLK. A low-to-high transition of RDCLK reads data from memory when OE1, OE2, and RDEN are low and OR is high. OR is synchronous to the low-to-high transition or RDCLK.
RDEN	31	I	Read enable. When RDEN, OE1, and OE2 are low and OR is high, data is read from the FIFO on the low-to-high transition of RDCLK.
RESET	1	I	Reset. To reset the FIFO, four low-to-high transitions of RDCLK and four low-to-high transitions of WRTCLK must occur while RESET is low. This sets HF, IR, and OR low and AF/AE high.
WRTCLK	25	I	Write clock. WRTCLK is a continuous clock and can be asynchronous or coincident to RDCLK. A low-to-high transition of WRTCLK writes data to memory when WRTEN2 is low, WRTEN1 is high, and IR is high. IR is synchronous to the low-to-high transition of WRTCLK.
WRTEN1, WRTEN2	27, 26	I	Write enables. When WRTEN1 is high, WRTEN2 is low, and IR is high, data is written to the FIFO on a low-to-high transition of WRTCLK.

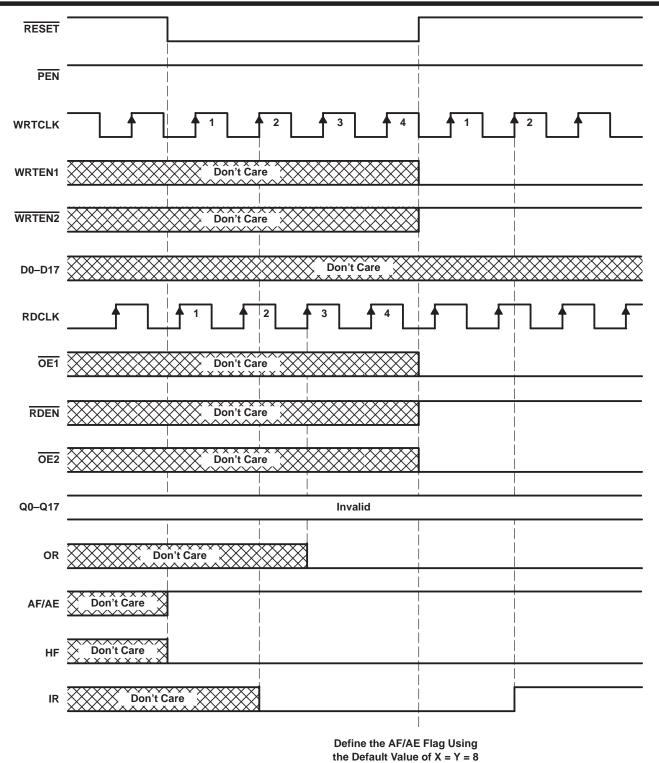


Figure 1. Reset Cycle

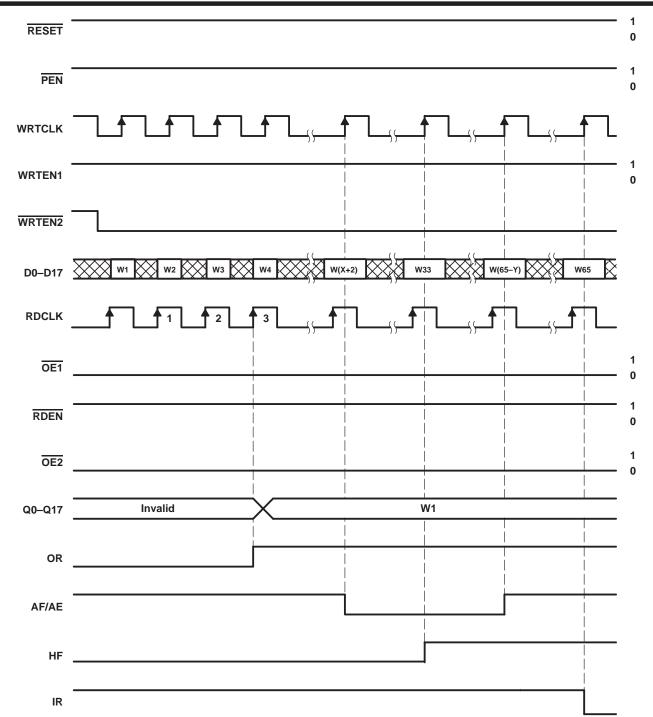


Figure 2. Write Cycle

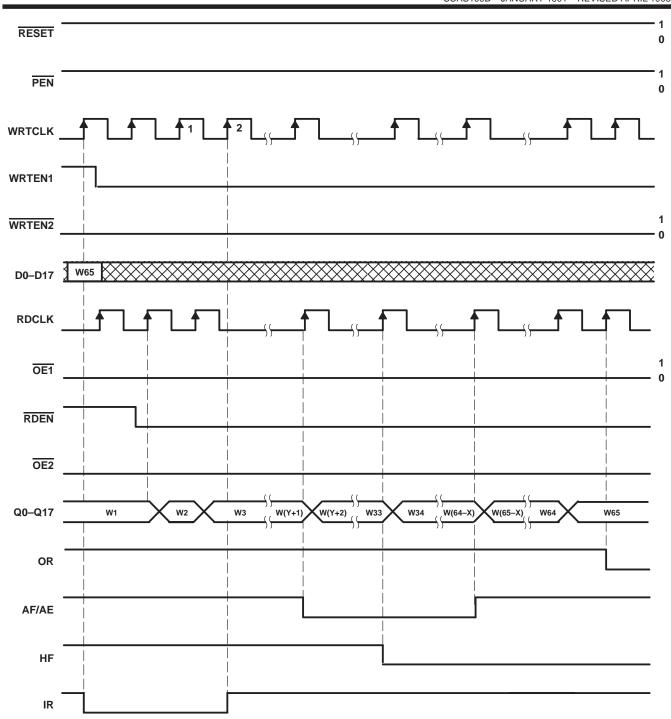


Figure 3. Read Cycle

offset values for AF/AE

The AF/AE flag has two programmable limits: the AE offset value (X) and the AF offset value (Y). They can be programmed after the FIFO is reset and before the first word is written to memory. If the offsets are not programmed, the default values of X = Y = 8 are used. The AF/AE flag is high when the FIFO contains X or fewer words or (64 - Y) or more words.

Program enable (\overline{PEN}) should be held high throughout the reset cycle. \overline{PEN} can be brought low only when IR is high and WRTCLK is low. On the following low-to-high transition of WRTCLK, the binary value on D0–D4 is stored as the AE offset value (X) and the AF offset value (Y). Holding \overline{PEN} low for another low-to-high transition of WRTCLK reprograms Y to the binary value on D0–D4 at the time of the second WRTCLK low-to-high transition. When the offsets are being programmed, writes to the FIFO memory are disabled regardless of the state of the write enables (WRTEN1, $\overline{WRTEN2}$). A maximum value of 31 can be programmed for either X or Y (see Figure 4). To use the default values of X = Y = 8, \overline{PEN} must be held high.

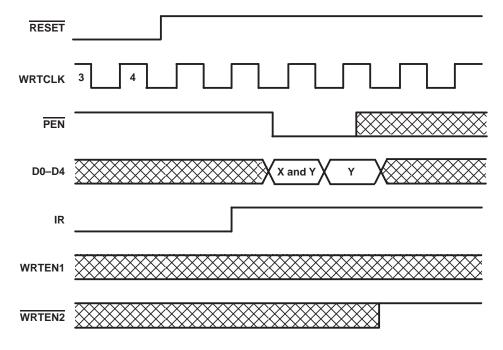


Figure 4. Programming X and Y Separately

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I	0.5 V to 7 V
Voltage range applied to a disabled 3-state output	–0.5 V to 5.5 V
Package thermal impedance, θ _{JA} (see Note 1)	74°C/W
Storage temperature range, T _{stg}	. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions

		'ACT78	'ACT7813-15		'ACT7813-20		'ACT7813-25		13-40	UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT	
Vcc	Supply voltage	4.5	5.5	4.5	5.5	4.5	5.5	4.5	5.5	V	
VIH	High-level input voltage	2		2		2		2		V	
VIL	Low-level input voltage		0.8		0.8		0.8		0.8	V	
ІОН	High-level output current	Q outputs, flags		-8		-8		-8		-8	mA
la.	Low-level output current	Q outputs		16		16		16		16	mA
lOL	Low-level output current	Flags		8		8		8		8	IIIA
TA	T _A Operating free-air temperature				0	70	0	70	0	70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	ARAMETER		TEST CONDITIO	MIN	TYP [†]	MAX	UNIT	
Vон		$V_{CC} = 4.5 V,$	$I_{OH} = -8 \text{ mA}$		2.4			V
Vai	Flags	$V_{CC} = 4.5 V,$	$I_{OL} = 8 \text{ mA}$				0.5	V
VOL	Q outputs	$V_{CC} = 4.5 V,$	$I_{OL} = 16 \text{ mA}$				0.5	V
Ц		$V_{CC} = 5.5 V,$	$V_I = V_{CC}$ or 0				±5	μΑ
loz		$V_{CC} = 5.5 V,$	VO = VCC or 0				±5	μΑ
Icc		$V_{I} = V_{CC} - 0.2 V_{C}$	or 0				400	μΑ
∆lcc [‡]		$V_{CC} = 5.5 V,$	One input at 3.4 V,	Other inputs at V _{CC} or GND			1	mA
Ci		V _I = 0,	f = 1 MHz			4		pF
Со		V _O = 0,	f = 1 MHz			8		pF

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ This is the supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC} .

timing requirements over recommended operating conditions (unless otherwise noted) (see Figure 5)

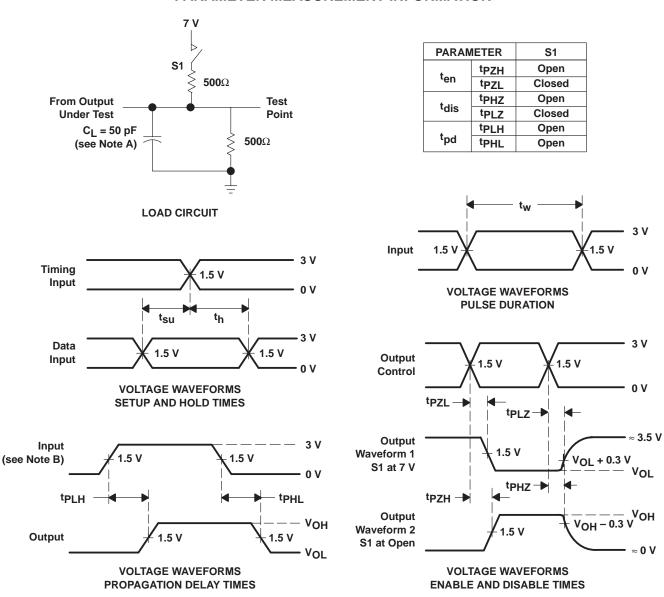
			'ACT78	313-15	'ACT78	313-20	'ACT78	313-25	'ACT78	13-40	UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNII	
fclock	Clock frequency		67		50		40		25	MHz		
		WRTCLK high or low	6		7		8		12			
t _W	Pulse duration	RDCLK high or low	6		7		8		12		ns	
		PEN low	8		9		9		12			
		D0-D17 before WRTCLK↑	4		5		5		5			
		WRTEN1, WRTEN2 before WRTCLK1	4		5		5		5			
١.	Setup time	OE1, OE2 before RDCLK↑	5		5		6		6		20	
t _{su}		RDEN before RDCLK↑	4		5		5		5		ns	
		Reset: RESET low before first WRTCLK↑ and RDCLK↑†	5		6		6		6			
		PEN before WRTCLK↑	5		6		6		6			
		D0-D17 after WRTCLK↑	0		0		0		0			
		WRTEN1, WRTEN2 after WRTCLK↑	0		0		0		0			
. .	Hold time	OE1, OE2, RDEN after RDCLK↑	0		0		0		0			
^t h	Hold tilfle	Reset: RESET low after fourth WRTCLK↑ and RDCLK↑†	2		2		2		2		ns	
		PEN high after WRTCLK↓	0		0		0		0			
		PEN low after WRTCLK↑	2		2		2		2			

[†] To permit the clock pulse to be utilized for reset purposes

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50$ pF (see Figure 5)

DADAMETED	FROM	то	'A(CT7813-1	15	'ACT78	313-20	'ACT78	313-25	'ACT78	313-40	
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP [‡]	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
f _{max}	WRTCLK or RDCLK		67			50		40		25		MHz
^t pd	RDCLK↑	Any Q	4	9.5	12	4	13	4	15	4	20	ns
t _{pd} §	RDCLK↑	Any Q		8.5								ns
	WRTCLK↑	IR	3		8.5	3	11	3	13	3	15	
	RDCLK↑	OR	3		8.5	3	11	3	13	3	15	ns
^t pd	WRTCLK↑	AF/AE	7		16.5	7	19	7	21	7	23	115
	RDCLK↑	AF/AE	7		17	7	19	7	21	7	23	
t _{PLH}	WRTCLK↑	HF	7		15	7	17	7	19	7	21	ns
t _{PHL}	RDCLK↑	HF	7		15.5	7	18	7	20	7	22	ns
t _{PLH}	RESET low	AF/AE	2		9	2	11	2	13	2	15	ns
t _{PHL}	RESET low	HF	2		10	2	12	2	14	2	16	ns
t _{en}	OE1, OE2	Any Q	2		8.5	2	11	2	11	2	11	ns
^t dis	OE1, OE2	Any Q	2		9.5	2	11	2	14	2	14	ns

 $[\]stackrel{+}{\sim}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

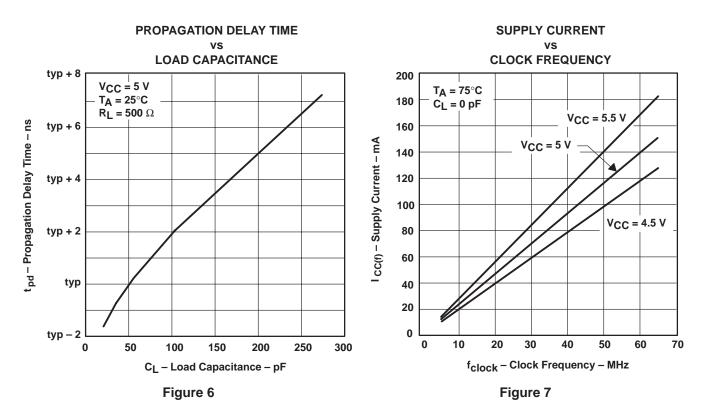


[§] This parameter is measured with a 30-pF load (see Figure 6).

operating characteristics, V_{CC} = 5 V, T_A = 25°C

	PARAMETER	TEST CO	TYP	UNIT		
C _{pd}	Power dissipation capacitance	Outputs enabled	C _L = 50 pF,	f = 5 MHz	53	pF

PARAMETER MEASUREMENT INFORMATION



NOTE A: C_L includes probe and jig capacitance.

Figure 5. Load Circuit and Voltage Waveforms

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

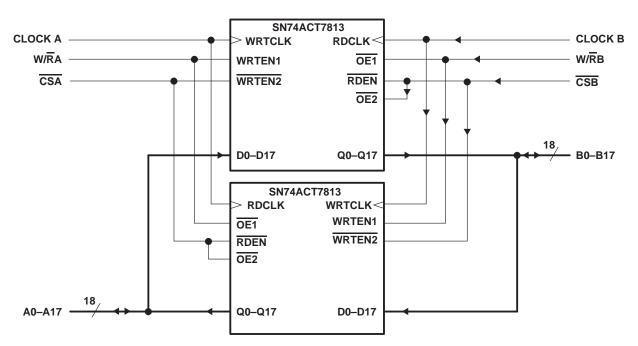


Figure 8. Bidirectional Configuration

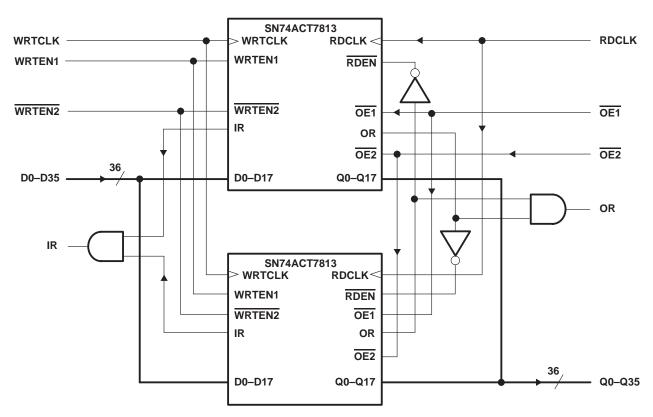


Figure 9. Word-Width Expansion: 64×36 Bits

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74ACT7813-15DL	ACTIVE	SSOP	DL	56	20	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	ACT7813-15	Samples
SN74ACT7813-20DL	ACTIVE	SSOP	DL	56	20	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	ACT7813-20	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

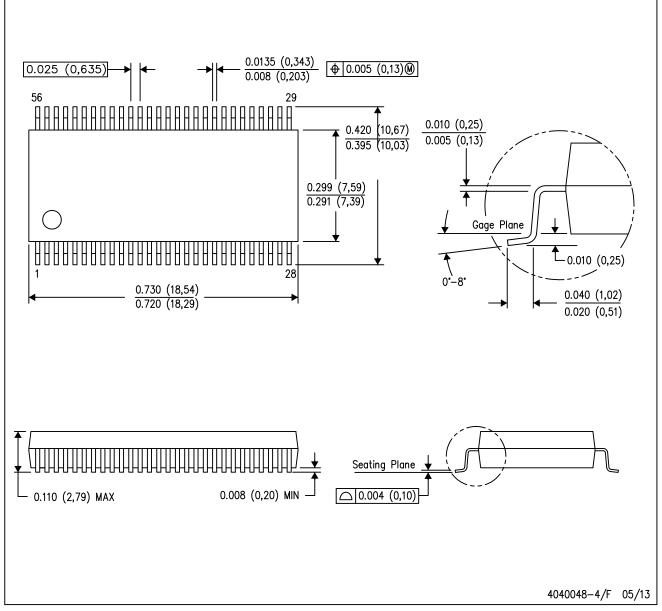
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.



10-Dec-2020

DL (R-PDSO-G56)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated